
FANSYS: A Computer Model of

Text Comprehension and Question Answering

for Failure Analysis*

Sergio J. Alvarado
Ronald K. Braun

Kenrick J. Mock

Technical Report CSE-93-4

[I_FORL','_T!ON SC_;:_..'C'-;:, :,.iJ:,i_,_,P,j'
/:-,.,'A_:St-.'L;_I;.:_'.,I.:!! __i_!R(_.R

:;i; f __! .i:.Ij

*Funds for the support of this study have been allocated by the NASA-Ames Research Center, Moffett Field,
California, under Interchange No. NCA2-721.

Table of Contents

Contents Page

List of Figures ... iv
Abstract .. w

1. Introduction .. 1

2. Issues Addressed in FANSYS .. 2

3. System Architecture .. 5

3.1 Overview of System Modules .. 5

3.2 Indexing Hierarchies ... 5

4. Domain Knowledge Representation ... 13

4.1 The DMS Fault Domain ... 13

4.1.1 DMS Entities ... 14

4.1.2 DMS States ... 16

4.1.3 DMS Actions .. 19

4.1.4 DMS Events .. 21

4.1.5 DMS Procedures 22

4.2 Case Representation ... 28

5. Comprehension of Input Text and Questions ... 36

5.1 Case-Based Parsing .. 39

5.2 Parsing Input Text ... 41

5.2.1 Marker Passing .. 43

5.2.2 The Parsing Algorithm ... 45

5.2.3 Domain Specific Inference Strategies ... 47

5.2.4 An Annotated Example .. 49

5.3 Parsing Input Questions ... 76

5.3.1 Question Patterns .. 77

5.3.2 An Annotated Question Example ... 78

5.4 Generating Answers to Input Questions ... 80

6. Memory Creation and Retrieval ... 84
6.1 MOP Attributes ... 84

6.2 Linking MOPs ... 86

6.3 Comparing Cases ... 88

6.4 Memory Creation Process .. 93

6.5 Memory Retrieval Process ... 98

7. User Interface ... 109

8. Current Status .. 125

9. Future Work .. 126

9.1 User Interface ... 126

9.2 Integration with Other Tools ... 126

9.3 Integration of Memory Structures ... 126

9.4 Implementation Scope ... 127

9.5 Knowledge Acquisition ... 127

9.6 Model and Functional Based Reasoning .. 128

9.7 Subjective Comprehension of Input Text ... 128

9.8 Belief Inferences Based on Past Failure Analysis ... 129

ii

10.Conclusion...130
11.References..131
AppendixA: CaseDescriptions
AppendixB: DetailedI/O Examples
AppendixC: CodeListings

o°o

111

List of Figures

Figure Title Page

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

2.1 Input Failure Description : Ring Concentrator Case 1 (RC.1) 3

2.2 Question Answering Session for Ring Concentrator Case 1 (RC. 1) 4

3.1 FANSYS System Modules .. 6

3.2 FANSYS Flow of Control .. 7

3.3 FANSYS Link Types for the Power-Up Event .. 9

3.4 Sample Abstraction Hierarchy - Indexing of Concepts within Memory 11

3.5 Partial Memory Abstraction Hierarchy .. 12

4.1 Knowledge Representation in FANSYS .. 13

4.2 DMS Fault Domain Classes .. 14

4.3 DMS Entities .. 15

4.4 Entities: Memory Organization Example ... 16

Figure 4.5 Entities: Textual Mapping Example .. 17

Figure 4.6 DMS States ... :.... 18

Figure 4.7 States: Memory Organization Example ... 18

Figure 4.8 States: Textual Mapping Example ... 19

Figure 4.9 DMS Actions ... 20

Figure 4.10 Actions: Memory Organization Example ... 20

Figure 4.11 Actions: Instance Example .. 21

Figure 4.12 DMS Events ... 21

Figure 4.13 Events: Memory Organization Example .. 23

Figure 4.14 Events: Textual Mapping Example .. 24

Figure 4.15 DMS Procedures .. 25

Figure 4.16 Procedures: Memory Organization Example ... 26

Figure 4.17 Procedures: Textual Mapping Example ... 27

Figure 4.18 Representing a Case in FANSYS .. 28

Figure 4.19 Failed Component Mapping for RC.1 ... 29

Figure 4.20 Failure Mode Mapping for RC. 1 ... 29

Figure 4.21 Failure Cause Mapping for RC.1 ... 29

Figure 4.22 Failure Detection Mapping for RC. 1 ... 30

Figure 4.23 Failure Correction Mapping for RC.1 (Short Term) 31

Figure 4.24 Failure Correction Mapping for RC. 1 (Long Term) 33

Figure 4.25 Failure Effects Mapping for RC. 1 ... 34

Figure 4.26 Case Representation for RC. 1 ... 35

Figure 5.1 Example Mapping of Text for the Power-Up Event 36

Figure 5.2 Index Pattern Structure ... 43

Figure 5.3 Activation Marker Structure ... 44

Figure 5.4 Prediction Marker Structure ... 44

Figure 5.5 The Two Question Formats .. 78

Figure 5.6 Sample Hierarchy for I-M-Time-Out-Event. 144.507 82

Figure 6.1 Sample GI Memory Hierarchy .. 87

Figure 6.2 Graphical Representation of Sample Query ... 90

Figure 6.3 Graphical Representation of Sample Case ... 90

Figure 6.4 Comparing Case and Query .. 92

iv

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Figure 7.1

Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5

Figure 7.6

Figure 7.7

Figure 7.8

GI Hierarchy After Adding RC Case to Memory ... 96

GI Hierarchy After Adding RC and GW Case to Memory 97

Traversal Paths for Example Query - Direct Retrieval 101

Traversal Paths for Example Query - Alternate Entry MOP 103

Traversal Paths for Example Query with Elaboration 106
FANSYS User Interface .. 110

Trace Window: Parsing RC. 1 .. 111

Query Construction via Menu: Selection of Requested Items 113

Query Construction via Menu: Selection of Failed Component 114

Query Construction via Menu: Selection of Given Information 115

Query Construction via Menu: Selection of Failure Mode 116

Query Construction via Menu: Selection of Failure Cause 117

Query Construction via Menu: Selection of Failure Detection 118

Figure 7.9 Query Construction via Menu: Selection of Failure Correction 119

Figure 7.10 FANSYS Help Window Showing Query Format .. 121

Figure 7.11 Sample of the Question Shell ... 122

Figure 7.12 Memory Inspector: Expansion of Ring Concentrator Case 1 124

Abstract

The research described in this technical report is aimed at extending previous theories of

natural language processing and memory search and retrieval. In particular, this research has been

concemed with the development of a model of text comprehension and question answering that

uses case-based reasoning techniques to acquire knowledge of failure analysis from input text, and

answer questions regarding diagnosis and repair of failures in complex systems, such as NASA's

Space Station Freedom. The major goal has been to develop a process model that accounts for (a)

how to build a knowledge base of system failures and repair procedures from textual descriptions

that appear in NASA's FMEA (failure modes and effects analysis) manuals, and (b) how to use

that knowledge base to evaluate causes and effects of failures, and provide diagnosis and repair

procedures. This process model has been implemented in an experimental computer program

called FANSYS (Failure ANalysis SYStem), which is a text comprehension and question

answering system for the analysis of failures occurring within the data management system (DMS)

of NASA's Space Station Freedom. This project received funds from NASA Ames Research

Center to support three major tasks in a period of a year: (1) analysis of conceptual content of

system-failure manuals; (2) characterization of the knowledge structures and processes underlying

the computational analysis of failures; and (3) implementation of an experimental version of

FANSYS that reads a few segments of the manuals, and answers a number of questions involving

failure diagnosis and repair.

vi

1. Introduction

A goal of artificial intelligence is to develop computer systems that exhibit skills similar to

those used by humans during language comprehension, language generation, planning, reasoning,

and argumentation (Alvarado, 1992). In the case of intelligent systems designed to aid in complex

decision making and the generation of expert advice, it is necessary that they be able to evaluate

given goal situations, present their beliefs on possible plans of action, justify their beliefs,

understand opposing beliefs, and argue for/against given plans. These skills are needed because it

is unlikely that any individual seeking expert advice would unquestioningly trust or follow the

suggestions of systems that can propose a course of action, but cannot justify such proposals, and

cannot understand or counter those objections that may be raised to their suggestions.

A step towards modeling the interrelationships that exist among reasoning, planning, and

language comprehension has been taken by Alvarado (1990) with the development of a prototype

editorial comprehension and question answering system called OpEd. In this system, the process

of text comprehension is viewed as one of managing many different knowledge sources, such as

causal chains of reasoning, goals, plans, actions, characters, beliefs, belief relationships, and

argument units. Associated with each knowledge construct are one or more processing strategies

that are invoked by a conceptual parser (Dyer, 1983) in order to build a network of beliefs

(Flowers et al., 1982) that represents the content of the input text. During question answering, the

system uses a question-categorization scheme (Lehnert, 1978) and retrieval heuristics (Dyer and

Lehnert, 1982) to analyze each input question and select specific strategies of search and retrieval.

The research described in this technical report is aimed at extending the theories of natural

language processing and memory search and retrieval underlying OpEd's design. In particular,

this research has been concerned with the development of a model of text comprehension and

question answering that uses case-based reasoning techniques (Riesbeck and Schank, 1989) to

acquire knowledge of failure analysis from input text, and answer questions regarding diagnosis

and repair of failures in complex systems, such as NASA's Space Station Freedom. The major

goal has been to develop a process model that accounts for (a) how to build a knowledge base of

system failures and repair procedures from textual descriptions that appear in NASA's FMEA

(failure modes and effects analysis) manuals, and (b) how to use that knowledge base to evaluate

causes and effects of failures, and provide diagnosis and repair procedures. This process model

has been implemented in an experimental computer program called FANSYS (Failure ANalysis

SYStem), which is a text comprehension and question answering system for the analysis of

failures occurring within the data management system (DMS) of NASA's Space Station

Freedom*. This project received funds from NASA Ames Research Center to support three major

tasks in a period of a year: (1) analysis of conceptual content of system-failure manuals; (2)

characterization of the knowledge structures and processes underlying the computational analysis

of failures; and (3) implementation of an experimental version of FANSYS that reads a few

segments of the manuals, and answers a number of questions involving failure diagnosis and

repair.

*See Barlett et. al (1992), McDonnell Douglas (July, 1990), and IBM (July, 1990) for complete descriptions of the
DMS.

2. Issues Addressed in FANSYS

The problem of analyzing and diagnosing failures that occur in mechanical or electronic

devices has been addressed by other researchers in artificial intelligence and computer science.

Some of their work has been concerned with the development of truth-maintenance systems (de

Kleer and Williams, 1987; Struss, 1988), expert systems (Reed and Johnson, 1990), connectionist

expert systems (Liu et al., 1991), case-based reasoning systems (Hammond and Hurwitz, 1988),

and digraph-based analysis systems 0verson and Patterson-Hine, 1990; Patterson-Hine and

Iverson, 1990; Stevenson, Miller, and Austin, 1991). However, these researchers have not

addressed the task of comprehension of natural language in descriptions of failures, which

requires dynamically constructing a knowledge base of the failure cases from textual input. In

contrast, the FANSYS project has been concerned with the domain knowledge, conceptual

representations, natural language processing strategies, and search and retrieval strategies

involved in understanding textual descriptions of failure cases and answering questions about such

cases. FANSYS involves the use of techniques for parsing input failure descriptions into a

network of cases that maintains the context for subsequent question answering.

Text comprehension and question answering in FANSYS involve four major tasks: (1)

applying domain-specific knowledge (i.e., DMS fault domain); (2) mapping input text into

conceptual structures that compose the internal representation of failure-analysis cases; (3)

representing and indexing failure-analysis cases in memory by creating a library of cases; and (4)

using the library of failure-analysis cases to answer questions regarding failure causes and effects,

as well as failure detection and correction procedures. Input failure descriptions correspond to

segments of FMEA manuals, and contain the essential wording of the original descriptions. Here

"essential" means that the original descriptions have been edited to remove those parts which

involve addressing issues that fall outside the scope of FANSYS (e.g., references to specific part

numbers, references to supporting documentation, and descriptions of functions of DMS

components). Figures 2.1 and 2.2 illustrate the current input/output behavior of FANSYS. The

input failure case shown in Figure 2.1 is a fragment of a failure description appearing in the

FMEA document number MDC H4563A (McDonnell Douglas, March 1990). A question

answering session using this case is shown in figure 2.2. The computational resources needed to

support this type of input/output behavior will be described in the rest of this technical report.

2

ITEM NAME: Ring Concentrator (RC)

FAILURE MODE: Loss of output - Failure to Start

FAILURE CAUSES: Piece-part failures, Contamination, Temperature (High or Low),

Mechanical Shock, Thermal Shock

FAILURE DETECTIONNERIFICATION: Indication of a RC "failure to start" is first detected by

the "next" active node on the network.Local System Management within the "next" node will

reach a time-out limit for receipt of the network token.

CORRECTIVE ACTION:

(A) Short Term: Network reconfiguration is effected automatically. The DMS network remains

in operation in a reconfigured state with the failed RC bypassed.

(B) Long Term: The crewmen check for "applied power" and check for "connector tightness".

If the RC cannot then be placed in operation, it is removed and replaced with an ORU logistics

spare.

FAILURE EFFECT ON:

(A) Crew/SSPE: None. The conditions associated with the replacement of a RC within the

network configuration are such that the network is already in a reconfigured state supplying
full services.

(B) Mission Support: None.

(C) System: None.

(D) Interfaces: None.

Figure 2.1

Input failure description" Ring Concentrator Case 1 (RC.I)

WHAT IS THE FAILURE MODE FOR THE RING CONCENTRATOR?

LOSS OF OUTPUT - FAILURE TO START.

WHAT IS THE FAILURE CAUSE FOR THE RING CONCENTRATOR WHEN THE FAILURE MODE
IS LOSS OF OUTPUT - FAILURE TO START?

[1] PIECE-PART FAILURES.

[2] CONTAMINATION.

[3] TEMPERATURE (HIGH OR LOW).

[4] MECHAN ICAL SHOCK.

[5] THERMAL SHOCK.

WHAT IS THE FAILURE EFFECT WHEN THE FAILED COMPONENT IS THE RING
CONCENTRATOR?

[1] FAILURE EFFECT ON THE CREW: SHORT TERM CORRECTION PROCEDURE: THE LOCAL

SYSTEM MANAGEMENT LOGICALLY DISCONNECTS THE RING CONCENTRATOR FROM THE
DMS NETWORK.

[2] FAILURE EFFECT ON THE MISSION SUPPORT: THERE IS NO EFFECT.

[3] FAILURE EFFECT ON THE SYSTEM: THERE IS NO EFFECT.

[4] FAILURE EFFECT ON THE INTERFACES: THERE IS NO EFFECT.

WHAT IS THE FAILURE DETECTION PROCEDURE WHEN THE FAILED COMPONENT IS THE

RING CONCENTRATOR AND THE FAILURE MODE IS LOSS OF OUTPUT - FAILURE TO START?

DETECTION PROCEDURE: THE DMS WAITS FOR A NETWORK TOKEN FROM THE RING

CONCENTRATOR. THE DMS WILL REACH A TIME-OUT LIMIT FOR RECEIPT OF THE NETWORK
TOKEN.

WHAT IS THE FAILURE CORRECTION PROCEDURE WHEN THE FAILED COMPONENT IS THE

RING CONCENTRATOR AND THE FAILURE MODE IS LOSS OF OUTPUT - FAILURE TO START?

[1] SHORT TERM CORRECTION PROCEDURE: THE SYSTEM MANAGEMENT LOGICALLY

DISCONNECTS THE RING CONCENTRATOR FROM THE DMS NETWORK.

[2] LONG TERM CORRECTION PROCEDURE: THE CREW CHECKS FOR "APPLIED POWER", THE

CREW CHECKS FOR "CONNECTOR TIGHTNESS".

CORRECTION PROCEDURE: THE CREW PHYSICALLY DISCONNECTS THE RING

CONCENTRATOR FROM THE DMS NETWORK. THE CREW PHYSICALLY CONNECTS THE

BACKUP RING CONCENTRATOR TO THE DMS NETWORK, THE CREW LOGICALLY

DISCONNECTS THE RING CONCENTRATOR FROM THE DMS NETWORK. THE CREW
LOGICALLY CONNECTS THE BACKUP RING CONCENTRATOR TO THE DMS NETWORK.

Figure 2.2

Question Answering Session for Ring Concentrator Case 1 (RC.1)

3. System Architecture

At a high level, FANSYS may be decomposed into five major modules: user interface,

case-based parser, memory update and retrieval, main memory, and the natural language

generator. An overview of these modules and their interactions is presented below and in figure
3.1.

3.1 Overview of System Modules

User interaction with FANSYS is handled through the user interface module. The

interface has been designed to ease user tasks by accepting both textual and menu-driven input.

The case-based parsing module is responsible for reading input case descriptions and questions,

and building an internal memory representation for what has been read. The memory update and

retrieval module determines where cases should be stored in memory and how those cases will be

retrieved during question answering. Once cases have been retrieved during question answering,

the natural language generator converts the internal representation into English text.

Although the design of FANSYS involves a modular architecture, its modules work in a

highly interactive manner. This interaction is illustrated by the flow of control diagram shown in

figure 3.2. This diagram indicates that during knowledge acquisition, control flows from the user

interface to the parser, and then to the memory module as each case description is parsed and

indexed in memory. The diagram also shows that, during question answering, control flows either

(1) from the user interface to the parser and then to the retrieval and generation modules, or (2)

from the user interface to the retrieval and generation modules. Furthermore, the diagram

indicates that both phases of processing in FANSYS require repeated access to main memory to

store or retrieve cases.

Figure 3.2 also shows that user interaction with FANSYS occurs primarily during the

question answering phase. The user interface supports a variety of options, including the ability

to browse through the representations created in memory, obtain help or system information, and

ask the system questions about what it has read via natural language or point-and-click buttons.

If a question is given in natural language, then the system will parse the question into a memory

search query. Conversely, the user may construct the search query by clicking on buttons which

represent known objects or procedures. Once a search query has been created, the memory

retrieval module will search memory for cases which answer the query. These cases will then be

output in English by the natural language generator. If desired, the user may instruct the system

to search for additional cases that may be relevant to the search query.

3.2 Indexing Hierarchies

The most elaborate components of FANSYS are the parsing module, update and retrieval

module, and the indices which both of these modules use to access memory. Both modules use a

set of hierarchical indices to access and organize memory. Memory is organized in terms of

Memory Organization Packets (MOP) (Schank, 1982; Riesbeck and Schank, 1989), where each

MOP represents a concept. Each MOP is a frame (Charniak, 1977, 1978; Minsky, 1975, 1977) of

slots and f'tilers, where the slots and fillers are defining attributes of the concept. The most

5

0

"i

Knowledge Acquisition Phase

Parsing
Module

Memory
Module

Question/Answer Phase

Textual Ca._

Parse textual case into

representation

representation
_¢

1

Add case into [

generalization memory [

hierarchy [

Repeat for all

Prosing
Module

Retrieval
Module

Retrieval
Module

User Interface Select input mode C
Module from user

Construct sezz'ch quer,/
Parse textual question via point-and-click

into search query buttons
i

___"_ Us_ Interface
Modde

[l_ermine entry point
in memory hierarchy

to begin search

I

Se_ch memory for

matching

Help and System
Information Memory Inspector

User Interface

Module

Relax search constraints ff user
wants to retrieve more cases

Output retrieved case_
in English

Figure 3.2
FANSYS Flow of Control

general MOPs occupy the topmost levels of the hierarchy. More specific concepts are indexed

below their more general parents. This indexing scheme continues throughout the hierarchy, with

the most specific instances of concepts ultimately indexed at the bottom. These specific concepts

are called Instance MOPs; they are denoted I-MOP. All MOPs which are not instances (i.e., they
are abstractions of some instance) are denoted M-MOP.

Although concepts in a MOP hierarchy are organized from the general to the specific,

there are other relationships among MOPs used in FANSYS's memory. These relationships

determine four memory hierarchies associated with the following types of links: ISA links, Slot-

Filler links, Lexical links, and Generalization/Indexing links. For example, in figure 3.3 all four of

these index types are depicted in relation to the event of powering up a DMS component. In this

figure, the system's memory contains two instances of powering up an object. One of the

instances involves a software entity called System-Management (SM) powering up a DMS

component (I-M-Power-Up-Event.1), and the other instance involves the space-station crew

powering up another DMS component (I-M-Power-Up-Event.2). These instances are connected

to the abstraction of a general power-up-event (M-Power-Up-Event) via ISA links, which are

depicted by arrowheads. These arrowheads do not indicate indexing or memory access direction,

but serve only to differentiate the ISA links from other types of links. All links, including the ISA

links, are bi-directional. ISA links connect sub-concepts to their parent concepts. In this example,

a "System-Management powering up an object" is a type of "DMS-Entity powering up an object."

The Slot-Filler links connect concepts which are related to attributes of another concept.

In figure 3.3, slots (i.e., attributes) of the Power-Up-Event include an actor performing the

power-up action, an object being powered-up, preconditions for the event to occur, an action

which is performed, and a state resulting from the action. All of these slots are constrained by

their fillers (i.e., values). Only MOPs which are specializations of the filler may occupy that slot.

In the Power-Up-Event example, only DMS-Entities may be the filler for the actor slot in a

power-up event. Similarly, the Power-Off state is a precondition for the event, the Power-On

state is a resulting postcondition, etc.

Lexical links connect all lexical information used to understand text with their respective

concepts and index patterns. In the Power-Up-Event example, the word "power" is linked to one

index pattern that contains "power" via lexical activation links. The figure shows two index

patterns, one where an actor powers up an object, and the other where an actor powers down an

object. The power-up pattern is linked to the power-up event through a lexical reference link. By

traversing these links, the concept of power-up-event can be activated when the single word

"power" is encountered while reading text. These indices are discussed in detail within the

parsing section.

Finally, Generalization/indexing (GI) links function similarly to both the ISA and slot-filler

links, except they organize generalizations across cases and organize cases by their differences.

GI indices are depicted in figure 3.3 by a triangle and dashed lines. In this example, the two

power-up instances are indexed by the ways in which they differ. I-M-Power-Up-Event.1 is only

accessible through the index of Actor=SM, while I-M-Power-Up-Event.2 is only accessible

through the index of Actor=Crew. This simplified figure only shows one type of GI index; there

may also be other indices for the object, precondition, action, and result slots. Furthermore, the

8

r-

.9

I'i D

LLI
rr"

'_ 0 m

__ -_ t tttt
o o _-L "6 ""

o_ =_g .
= /////___ .9.o i_

/ '///
x_ _ <.5".- o m

., I la-. ._

o_ _ I e ,I-

,..-.' ._.g..=, _ I _ - •
< ,_ o. <: ,',- ,- ' I_.

1, ...,... =
... I /: , .,x _.." - 16_ .,..._

I / / / / ."k-_ .A., , _ _r r__ _,

1- -- - -" - -,0--]roo .,. 0 i-_il
IIC)II:? 0 "".. ".."" _ I I

I I I "_"'o -°_'_ oooWl I ,LI/_ ,- ': -_ ...,L-:........ _:,
t i %. LLD _ a) -__11_1/_ _, '.. __ I

"" I I _::)1/_ 0 _ (ti "i I
I Ic-I I(L 1:1.. -_ I

i I I I I /I I "-'i

CO

i::l.,

_<

GI indices are only depicted here by a triangle; however, the GI indices are not simple indices, but

may be comprised of an entire hierarchy of MOPs. This GI hierarchy is very useful for quickly

accessing memory during question/answering, and is discussed in detail within the memory
retrieval section.

The previous example showed how the different links interact with one another to index

and represent concepts in memory. However, figure 3.3 does not show how concepts are

represented in memory as a whole. In contrast, figure 3.4 is a more comprehensive diagram

which shows how the Power-Up-Event is represented in relation to M-Root, the conceptual

abstraction of all concepts. In this figure, the dashed line encircles the example shown previously

in figure 3.3. The Power-Up-Event is indexed under the more abstract category of Power-

Events, which is a type of Event, which ultimately links to the Root. Similarly, a hierarchical

organization is shown for index patterns, words, and the lexicon. There are also connections

between ISA links and Slot-Filler links; i.e., an abstraction hierarchy also exists along the Slot-

Filler links. These are depicted in the figure by the ISA links from I-M-SM.1, an instance which is

the filler for a slot of I-M-Power-Up-Event.1. I-M-SM.1 generalizes up the ISA hierarchy to the

abstraction of M-DMS-Entity, which is a a filler for a slot of the more general Power-Up-Event.

While not shown in the figure, similar links exist for the other fiUers between abstractions and
instances.

Figures 3.3 and 3.4 illustrate the different types of indices and how these indices organize

concepts in memory. The same memory organization scheme is used for organizing entire failure

cases, where each failure case contains the failure mode, correction procedure, detection

procedure, failure causes, and failure effects for a given device. Failure cases are organized

hierarchically through the ISA and GI links. These link hierarchies are shown for a portion of

memory cases in figure 3.5. The GI index hierarchy is shown in dashed lines and triangles while

the ISA hierarchy is shown with solid arrows; Lexical and Slot-Filler links are not shown. This

figure shows how multiple instances of the System Management, I-M-SM. 1 and I-M-SM.2, are

indexed under the System Management MOP M-SM. An instance of the Power-On-Self-Test, I-

M-POST.I, is indexed in an identical manner under the MOP M-POST. Similarly, a failure case

regarding the Gateway, instance I-M-GW. 1, is indexed under the Gateway MOP, M-GW. Entire

cases are indexed in an identical manner under the Case MOP M-Case. Figure 3.5 also shows one

other case, an instance of a ring concentrator failure case called I-M-RC. 1.

10

o
o

fT"
I

/
/

",.Z_

8_

,,lit,

m

.....-_°i°°°°°
..-"° _i .°°"

°.°°""_ _i. o°° I
--.

oooooo_oooooooooooooooooooooo J Jooooooooooooooooo 'LQ C_ _ I

C

o

o

!

o _

4. Domain Knowledge Representation

One of the f'u'st tasks confronting a researcher in constructing a natural language

understanding system is to characterize the domain in which the understanding system is to

operate (Schank, 1975, 1978). Once this domain has been characterized, a representational

scheme must be adopted that will allow the researcher to encode that domain knowledge in a

manner that permits the system to perform the required understanding task (Alvarado, 1990;

Carbonell, 1981; Schank and Carbonell, 1979; Wilensky, 1986). In FANSYS, the model of

domain knowledge used during text comprehension and question answering consists of two types

of representational classes: one encompassing the specifics of the domain of space-station DMS

faults, and one characterizing the fault cases which are described in the FMEA manuals (see figure

4.1). Although these classes differ in organizational function, they are each represented using the

same frame-based representational structure of the MOP. The class that organizes DMS-fault

knowledge characterizes the entities and relationships found within the DMS fault manuals, and

enables FANSYS to parse case descriptions from such manuals, and perform limited inferences

and reasoning within the domain of the space-station DMS. In contrast, the class that encodes the

fault cases organizes a library of fauh descriptions that is built up during parsing and queried

during question answering. Both of these classes are indexed under M-ROOT, the top-most

abstraction MOP which organizes memory. This section will consider these two classes of

domain knowledge in detail.

I M-Root [

/ \
Domain Cases

Figure 4.1
Knowledge Representation in FANSYS

4.1 The DMS Fault Domain

After having analyzed the domain of failure effects and procedures described in the FMEA

manuals, it was determined that the DMS fault domain could be effectively modeled by five

conceptual types of knowledge structures: entities, states, actions, events, and procedures (figure

4.2). These classes provide a detailed enough representational scheme of the domain to encode

the events, relationships, and procedures underlying the textual descriptions of fault cases in the

manuals. The case descriptions that are built by FANSYS are in turn founded upon these five

types of domain knowledge. These types will be considered individually below.

13

domain knowledge _ entities
states

actions
events

procedures

Figure 4.2
DMS Fault Domain Classes

4.1.1 DMS Entities

Entities are defined as the hardware and software components of the DMS system. There

are two broad categories of DMS entities: systems and messages (figure 4.3). Systems are the

physical devices of the DMS, such as an ORU (Orbital Replacement Unit), a token ring network,

or an ORU's local system management software. Systems may be composed of hardware and

software components, which may themselves be systems, to whatever granularity is required to

model any of the textual descriptions.

As figure 4.3 shows, FANSYS recognizes several categories of systems. The mission

components are the four systems that are effected by failures described within the FMEA manuals

(for example, see the "Failure Effects" section, figure 2.1). The different networks of the DMS,

as well as the DMS itself, are explicitly represented as two other categories of systems. The

hardware components are the physical devices that comprise the DMS and its subcomponents,

such as individual ORUs (e.g., ring concentrators and gateways) and the power systems. Finally,

the software components of the DMS represent the software support systems, including system

management software, error correcting procedures, and the like. These categories of systems

effectively model the physical components of the DMS.

The second entity described in figure 4.3 is that of the message. Messages are the entities

used in communication between or within systems. A token and a heartbeat message in a token

ring network represent this type of entities. Messages are typically passed between systems

within the DMS, carrying status or other information, and are differentiated from software

systems in that they are not active agents within the DMS network. Rather, they represent

passive constructs that are manipulated by systems.

Figure 4.4 shows a part of the ISA and Slot-Filler hierarchies for some sample entities.

Notice that hardware components may be recursively defined as consisting of other hardware and

software subcomponents. For example, a ring concentrator (a hardware component) may consist

of a transmitter (a hardware component) and a local system management program, as well as

other hardware and software subcomponents. Likewise, software components may consist of

several other software subcomponents. (System management software typically has application

management software as a subcomponent, for example, although this is not reflected in figure

4.4.) Such systems are defined to the level of granularity required to parse the case manuals; i.e.

there is no need to represent a transmitter at the level of the atoms that compose it, since those

atoms are not referenced within the FMEA manuals.

14

G)

0
°_

°m

c-
O

/ \
 MHar0ware,,M aeomponent IfJ Component

_," _ ",.

hardware _ware _ soitw=l

L

I..° I
=-/ \-=

IM-Transmitt"rl

IM-Message]

/ ",,

Figure 4.4
Entities: Memory Organization Example

To see how text is mapped into the class of entities, consider the sentence "system

management reaches a time out limit for receipt of the network token from the ring concentrator."

This text references two systems and one message: the ring concentrator and system management,

and the network token, respectively. Figure 4.5 shows a concept instance for each of these

entities from the text, and the actual text that maps into those instances. (The exact mechanism

by which text is parsed into memory will be detailed later in section five on parsing.) Notice that

as the ring concentrator is instantiated in memory, its subcomponents may be instantiated as well

by inference. Thus, by explicitly representing concepts and their components in memory, the

domain representation allows FANSYS to make inferences and connections not explicitly found

within the text.

4.1.2 DMS States

A state represents a property of a DMS component. It may apply only to an individual

component, or it may express some relationship between components. As shown in figure 4.6,

there are eight states that are pertinent to the DMS domain. The first six encode physical

properties for a specific DMS entity, including its structural integrity, whether it is operating

within an acceptable temperature range, whether it has been contaminated, whether it is powered

on or not, whether it is operable or faulty, and whether it has passed or failed a given diagnostic

that has been performed on it. The other two states encode relationships between two entities of

the DMS, such as a description of the other components to which a given device is logically or

physically connected, and the current state of any communications between two entities. These

states have been found to sufficiently characterize the state of the DMS system during the

understanding process of the FMEA manuals.

16

IM-Entity

/

M-Hardware- M-Software-

Component Component

M-Re II-M-SM.2
t I r"system management"

I,-_-_c._l

"ring con(e ntrator" _oftware

I-M-Transmitter.4 I I-M-SM.51

\

t

l
IM-Token

II-M-Tokenl
f

"network token"

Figure 4.5

Entities: Textual Mapping Example

temper=lure _ toleral_e

_"-" irlolerable

contaminatlon _ oontan_nated
uncontaminated

operational_ op_ation=l
non-operatkmal

_pa.u

t ¢onnect_ logically dilooc_tq_ed

_, _ r_o t_mltled

' tr_srnlss_ _-o_
_" _ torec_e

"_ marly to trarlmll

Figure 4.6
DMS States

Figure 4.7 illustrates a fragment of the ISA and Slot-Filler hierarchies for a few states.

Notice that each of the states involving a single entity has a single slot detailing the object to

which the state applies (e.g., m-power-on), while each of the states involving relationships

between multiple entities has a couple of slots detailing the entities to which that state applies

(e.g., m-physically-connected). These slots are expressed at an abstract level for each state, i.e.,

since slots are inherited down the ISA hierarchy, each of the subMOPs for that class will also

inherit those slots.

_nection-Sta :eI

.... - .

i to,sWnI72:

M-Power-State I M-Connection-State

M-Power-On

Figure 4.7
States: Memory Organization Example

The mapping of text into state structures is exemplified by figure 4.8, which shows the

instances created for the parsing of two sentence fragments: "the power for the standard data

processor is on" and "the ring concentrator is connected to the primary network." Notice that the

18

devicesmentionedin the fragmentsmapinto entities,while the textual stateassertionsmapinto
the statesthemselves.Thetext will generallyspecifytherelationshipsof varioussubcomponents
for a MOP to that MOP. For example,the f'n'st fragment specifies that the standard data

processor fills the object slot of the m-power-on state.

Figure 4.8
States: Textual Mapping Example

In practice, states are rarely mentioned explicidy in the manuals that were studied for the

FANSYS project. Rather, they are usually left implicit as the results or preconditions of the

events which are described within the manuals. Although left implicit in the text, these states

must be explicitly represented in memory. For example, the result of powering on a ring

concentrator is that the ring concentrator is in a state called m-power-on (perhaps with a

precondition of being in the state of m-power-off). This relationship between states and events

will be clarified shortly when the representation for events is discussed.

4.1.3 DMS Actions

Actions may be defined as acts performed by or on a DMS component. As with states,

actions fall into a few well defined types, including powering actions, diagnostic actions,

connection actions, and transmission actions (see figure 4.9). Powering actions involve turning

on or off components, whereas diagnostic actions typically involve the performance of some sort

of diagnostic test on a device. (For example, there is a diagnostic called the Power-On Self Test

that is executed at powering-up time for some components, which determines if the component

has become successfully operable.) Connection actions deal with establishing physical or logical
connections between different devices. Transmission actions cover the transmission and reception

of messages, and occurrences during communication such as the timing out of a device.

In addition to these types of actions, there are also some individual actions that describe

operations on DMS systems. One of such actions represents the moving of something from one

physical location to another, such as from the ground to the Space Station. Another such action

19

encodesthephysicalverificationthata systemis in thestatethat it is supposedto be in, e.g., that
theconnectorson a unit areproperlyconnected.Thelast suchactionrepresentsthe looking-up
of abackupunit in systemtablesby thesystemmanagementfor selectionduring the switchoverto
aredundantunit.

aeti°n s _ _k_/u p r_lw:ement

\\\ "asOnos_¢ _ _ror eorreetio.

_ charge kx_ -'"_- ix,Mx on., .st

_ power _ power.down
_ power-op

_ tz.ansmissk__ line-out

wait for message
_"- _ to receive

message tnmsaclion

Figure 4.9
DMS Actions

Actions always involve an actor, and one or more objects that are acted upon. See figure

4.10 for some sample action MOPs, and the ISA and slot-filler hierarchies which characterize

them. Note that while the powering actions have the usual object and actor slots that are

inherited by all actions, the transmission actions have two additional slots detailing the sender and

receiver of the transmission events.

__j M-Action

_ /\ I M-Transmissi°n- I

J____ [M'Entityl! _l-SysternJ

Ii-Powo -up Ii-Timo-OutI
[M-Power-Down] IM-Me age-

[Transaction

Figure 4.10

Actions: Memory Organization Example

In contrast to the prior types of domain representation that have been considered, actions

are never mapped to directly by the parser. Rather, they are used as components of individual

events; the events themselves are mapped to from the text. Actions thus represent atomic

building blocks upon which events are founded. Figure 4.11 shows some sample action instances

20

thatmightbecreatedduringtherecognitionof theeventswhichencompassthem. Eventswill be
consideredin detailnext.

,_ M-Action

I M-Power- I
Action I

IM-Power-Downl

Il-M-Power-Down.11

I,-M-SDP.211'-M-SM.al

4.1.4 DMS Events

M-Transmission-

Action

I M-Message-
Transaction I

=,,,_//.,I-M-Message-I
Transactiona I

I
I I'M-RC.51 [,._ I_M-Token.71

Figure 4.11
Actions: Instance Example

An event represents the occurrence of some action and the resulting state change that

takes place because of that action. Each of the actions detailed in figure 4.9 has a corresponding

event that describes the state transitions for that action; the categories of events are thus identical

to the categories of actions (see figure 4.12). To illustrate this, consider the class consisting of

powering events. Powering events involve transitions between power states based on the

powering actions. For example, the event m-power-down-event packages the m-power-down

action together with the precondition that the power be on initially (the state m-power-on) and the

result that the power be off afterwards (the state m-power-off). The other classes of events

likewise specify state transitions based on the actions to which they correspond. Since the

precondition and results of events are seldom mentioned explicitly in a text, they must be

explicitly represented in memory. This facilitates reasoning based on world knowledge and the

generation of inferences regarding the current state of the DMS systems.

events v_ty
look up replacement
connecllon_ loglcal¢onnecl

• __--'----- _ ¢_=_r.=
_"- physk=lcmnecl

physicaldlsconnecl

dlagnostlc_ erro_correctlon

poweronselltest

power _ power.down

tmm,mlsslon_ time-out

__ watttotr=n=mat

send message
_" receive message

Figure 4.12
DMS Events

21

Sinceaneventcharacterizesstatetransitionsbasedonanaction,aneventmaybedefined
as an action, that action'spreconditions(which are eachstates),and the resultingstatesthat
follow from that action. Figure4.13depictsthis slot-filler relationship,aswell asother sample
partsof theISA andslot-f'fllerhierarchiesfor the eventclass. Note that everyeventhasone(or
more)preconditionsandresultsassociatedwith anactionat theabstractlevel. As theclassesof
eventMOPsbecomemorespecified,the individualfiller constraintsalso becomemorespecified
asto exactlywhich statesandactionsareinvolvedin characterizingtheassociatedMOP.

Text from theFMEA manualsthat describeeventsmapdirectly into the eventMOPs,as
demonstratedby figure4.14. The sentence"the systemmanagementpowersdown the standard
data processor"causesan instanceof the m-power-downMOP to be created. The action,
preconditions,andresultsassociatedwith that MOP are inferredby virtue of the fact that the
eventwasrecognizedto haveoccurred. FANSYS is thusableto track statechangesduring the
parsingof text,anecessarystepto theunderstandingtaskfor whichthesystemwasdesigned.

4.1.5DMS Procedures

The final andmorecomplexconceptualtyperequiredto represent the DMS fault domain

is that of the procedure. A procedure represents an ordered sequence of events or other

procedures involved in some task described by the FMEA manuals. Figure 4.15 details the

different categories of procedures (also sometimes called sequences-of-events within the

FANSYS representation) defined within the system. Failure causes encode the events that lead to

the failure of an ORU. These events are not actually specified within the manuals, save by named

references like "piece-part failures" (see the "Failure Causes" section of the sample case manual in

figure 2.1). For this reason, the actual set of steps for each of the failure causes is currently left

undefined in the system. These steps could be fleshed out if more documentation that identified

them became available.

The failure modes describe the events that occur when a failure is first detected. For

example, a device may fail to become operable during the startup procedure for that device. Like

the failure causes, the actual specifics of the procedure are left largely undefined, since they are

not well specified within the FMEA manuals.

The failure detection procedures encode the specific steps used to detect the failure of a

device within the DMS. For example, the m-next-node-detection procedure describes the case

where a token circulating around a token ring network is not received by a specific ring

concentrator;, the implication is that the ring concentrator immediately upstream of it has failed.

The last class of procedures is that of the failure corrections. These procedures describe the steps

that need to be taken in order for a failure to be repaired. In the case of the failed ring

concentrator just described, the correction procedure might be m-bypass-node, which consists of

the automatic selectover to a redundant ring concentrator by the DMS system management.

22

IM-Event I

"" " ac°on
IM-state !

IM-Power-Eventl
preco_._--_ult J Iac,,o.

M-Power- IM-Power-State [Action

[M-oPw°nWErvent I

ac ,on
IM-Power- M-Power- M-Power-On Down Off

IM-ActionI

M-Transmission-Event I

I action _esult

M-Transmission-IM-Transmission- I
Action IState I

I_-eSseadge_eventI

M-Ready- IM-Message-
to-Transmit ITransaction

M-Message-

Transmitted

Figure 4.13

Events: Memory Organization Example

"the system
management
powers down
the standard
data
processor''

I M. Event I

ft
IM-Power-Eventl -Zransm,ss'on-Eventl

M-Power- _ 4-Send-

Down-Event I IM;ssag e-Event

I I-M-Power-

j] Down-Event.1 I

precony action resu_'_

I-M-Power- I II-M-Power-
On.2 ! IOff.1

-... _--_ I-M-Power-
powers
down s iDown. 3

the ..." object/ %ctor

II-M-SDP.5I
J

"standard
data
processor"

II-M-SM.6 I

"system
management"

"the ring
concentrator
passes the
network token
to another
ring
concentrator"

I-M-Send- I

Message-Event.7 L

preco/ actior "_sult "

I-M-aeady- II-M-Message- I
to-Transmit .8 ITrans mitted. 10!

_l-M-Message-

Transaction.9 _asses

actor__sender Irecipient "_"_"'"

I,-M-RC.llII,-M-RC.12II'-M-Token.131

"ring "another ring "network toke n"
concentrator" concentrator"

Figure 4.14

Events: Textual Mapping Example

procedures _ failure c_use _ faulty component
---.,,. _=_ ,hock

\\\ _-- t+,,=,_=,°outof,=,_ .
\\\ X_ " cOntamil'mtiOn

\\ \ " erroneous input
\ _ failure mode -_... startup - no output

\ \ _o_,_,d -.o o_t
\ \ o_o_-.,_.o,s o_
\ • failure deteclion _ undefined

" power-on .If test

_ error oc)n'eclingcode

_ heartbeat
f_lure correction_ undefined

L _ reconfigum_on ,_____........-witd_ or bypess

\\ __"- _mssr_
, "_-'" bypass using I_ckup net

k_ _,ogical switch

\\, ,_up =_up
reptacewith spare

", non-operationalreplacer'r_t

Figure 4.15
DMS Procedures

Figure 4.16 shows some simplified fragments of the ISA and slot-fiUer hierarchies for

procedures. Like events, procedures have preconditions and results that are specified as state

assertions; a procedure is in effect a complex series of state transitions (made by individual events)

that lead from some starting set of states to some final set of states. For example, the

preconditions for the m-next-node-detection procedure include the fact that the devices involved

in the procedure are actually connected to the network physically and logically, while the result is
that a failure has occurred. The sequence of steps details exacdy what group of events (or other

procedures) occurs in the procedure. Notice that a detection procedure actually consists of three

subprocedures: the events in the detection process, the events necessary to verify that the failure
has indeed occurred, and the final notification events to inform the DMS management of the

failure. (Because only the detection steps are detailed in the manual cases with which the system

currently deals, the notification and verification procedures are left undeveloped.)

One example of the detection process is illustrated in figure 4.16 by the steps for m-next-

node-detection, which detail how a ring concentrator waits to receive a token from another ring

concentrator, before eventually timing out. This process indicates a failure may have occurred in

one of the ring concentrators. In addition to the slots specified in the figure, there are other slots

not shown. For example, failure detection procedures have slots describing what component

failed and which component actually detected that failure. These slots have been omitted from the

figure due to spatial considerations; the interested reader is invited to examine the domain

representation definitions included in Appendix C for complete details.

In order to illustrate how the representation of a detection procedure can be used to

encode text, consider figure 4.17. The detection procedure for the first ring concentrator case

consists of the following two sentences: "Indication of a RC failure is first detected by the next

active node on the network. System management will reach a l_ne out limit for receipt of the

network token." As the figure shows, the first sentence is essentially a pointer to the class of

detection procedure described by the text; in this case, it is a next-node detection procedure, in

25

. M-Sequence-I
of-Events . I

preco_ _ '_ ,il, _'__equence-of-steps

IM-State _ "_k-Sequence-°f-Steps I

M-Fa,,ure-I M-Failure-It Vl-Failure-IIM-Failure- I

Cause I Mode II 3etection IICorrectionl
A ¢ _i, '_equence-of-steps

IM-Thermal-"I M-Startup-I / IM-Non- IM-Correction-
IShock-Causel No-Outputl/ IOperational-lAnd-Group

/ sequence-of-steps I

M-Next-

precon_N°de- Detecti°n I
• "_sult

M-Physically-I IM-Non-
Connected I lOP erati°nal

sequence-of-steps

IM-Detection-And-Group I

[,
IM-Detection-Procedure I

I sequence-of-steps

IM-And-GroupI

IM-Wait-To-I IM-mime-Out
Receive I IEvent I

M-Detection-
And-Group

,/
M-Detection- iProcedure

M-Correction-

Procedure

_pM3-Notification -

rocedure i

IM-Verification-
Procedure I

Figure 4.16

Procedures: Memory Organization Example

.C: .'_'-- = .

0 _E_ :

_ I_ .-_. _0 _ _--___ t-,_'
'-'_ ' _ I_i_-._-o /I E _ u'_ _ C_

1
o, ._

_I *-

I oi
..__

I I Z_C_o I

I O_'oL_ I
:_, "o ._-' ' .-" m Q=_ I _)

I _m_ I
I E:o>E,- i

'_" w I= _)i (_o.= .- I
I ,,..E_ I

8 E I w"="= I

I <-_ _.....
_. I I.I. r- w w i'd

which the node located downstream from a device in a network detects the failure of another

device by timing out for the receipt of some message from that device. The second sentence

references an actual step in the detection process: the timing out of the next node by failing to

receive the token. Once an instance of the next node detection procedure has been instantiated,

the rest of the representation for that procedure can be inferred, including the other steps in the

detection process, the preconditions, the results, and so on (this is not shown in figure 4.17). The

actual process of parsing text with procedural descriptions will be discussed in the section on

Parsing.

4.2 Case Representation

Cases are the top-level organizing structures that package together entities, states, actions,

events, and procedures into a representation of each failure case descriptions detailed within the

FMEA manuals. A case description has slots corresponding to each of the main sections specified

within a FMEA manual entry (see figure 2.1 for an example of such a text). Figure 4.18 shows

the slot-filler hierarchy for a case description, including all of the slots that characterize a case

(note that in practice there may be more than one of each type of slot in the case description).

These include the failed component (an ORU entity), the failure causes and mode (procedures),

the detection and correction procedures, and the failure effects (represented as a type of

correction procedure). This case representation was determined by examining and characterizing

the content of the FMEA manuals that the system is designed to parse.

[M-Case_,.,._. I

M-ORU I

M-Failure-Mode I

M-Failure-Cause I

M-Failure-Detection I

M-Failure-Correction I

M-Failure-Effect I

Figure 4.18

Representing a Case in FANSYS

Consider the text describing the ftrst failure case for a ring concentrator given in figure

2.1. The next series of figures shows how each of the pieces of that manual text map into the

memory structures that organize them. Figure 4.19 shows the mapping of the failed item name.

The "item name:" tag is the stereotypical method in the FMEA manuals of specifying that what

follows will be the name of the item that failed. When parsed, that tag provides a context which

generates expectations to the system about what will occur next in the text. This is similarly the

case for other tags like "failure mode:" and "failure effect on:". This process will be detailed in

the section on Parsing.

28

III-M'Generic'RC'4881
F

"ring concentrator"

Figure 4.19
Failed Component Mapping for RC.1

I "FAILUREMOOE:"" *l output"J i I-M'startup" NO'OUtpUt" 1089jtallurlIo itiri" F

!
"loss of output - failure to start"

Figure 4.20
Failure Mode Mapping for RC.1

Figures 4.20 and 4.21 demonstrate the mappings of the failure modes and causes. These

mappings are also fairly stereotypical in format; the text maps straight into the procedures which

underlie it. However, the representation contains more information than the text for each of the

modes and causes, and such an information is inferred when the individual MOPs are instantiated

at parse time.

"FNLURE CAUSES: ple_-Imrt hJlum4,
contamlnatlo_ tmq_rwturo (high or
Iow),mech_lcJ _ _ =hock"

JI-M-Faulty-Component-Cause. 1094 I

Il-M-Faulty-Contaminatlon-Cause.4401
f

I I'M'Temperature'Out'Of" Range'Cause'443 I
F

I-M-Mechanical-Shock-Cause.440 I
(

•medwicallixxt"

I I'M'Thermal'Sh°ck'Cause'440 I
(--

Figure 4.21
Failure Cause Mapping for RC.1

Figure 4.22 is a recapitulation of the figure used in the domain representation section on

procedures, demonstrating the mapping of the detection procedure m-next-node-detection. As

mentioned previously, the first sentence acts as a pointer to the type of detection procedure being

described, while the second sentence provides information for instantiating the specific procedure.

Figure 4.23 is an example of the representation of the textual description of a procedure

that has no steps explicitly specified; instead, the text just talks about the procedure in abstract

terms, leaving the system to infer the actual steps. In this figure, the first sentence maps into a

29

o

very broad category of correction procedures involving the reconfiguration of a network. The

second sentence specifies which procedure in that class is being referenced.

Figure 4.24 provides an example of a procedure wherein only the steps of the procedure

are referenced, since both sentences describe individual steps of the m-non-operational-

replacement correction procedure. As the last three figures suggest, the parser must be able to

construct and recognize a procedure when any combination of pointers and individual steps occur

within the text.

Figure 4.25 shows the mapping of the failure effects. In each of the manual entries

examined, there was generally no effect on the mission components (this mapped to an instance of

the null-procedure). In some cases, a justification is given that the correction procedure alleviated

any possible effects (the first effect of figure 4.25, for example). In such cases, the text is mapped

to the correction procedure which is used as that justification.

Figure 4.26 ties all of the preceding figures together into a single case representation.

This is the complete characterization of the first ring concentrator case that is built by the system

during the parsing of that case. The other cases have similarly been represented by hand-coding

them using the same representational scheme (see Appendix A for details), although the parsing

process should be largely the same as the example that is handled by FANSYS. The actual

logistics of the parsing process are described in the next section.

32

ll_M_Non_OperationaI-Replaceme nt. 1238_,, _
_ _ failed-

amework sequence-of-steps' , "-,,,,_ponent

Ii_M_Lo g-Term.699J lI-M-Oorrection-And-Group.316.1237J
' •

"long term" _ 2 _ ,

II_M_Correction-Proc.315.1236_JM-Verification-Proc i JM-Notification-Proc I

__'_._sequence-of-steps

JI-M-And-Group.314.12351 ;ep,raSc_d-rrw°i_hedaa_au

" check. I _ logisticsspa.re."J
I-M-Verify- I II-M-Verify- .79_ II-M-ReplaOe- 22_
Power-Event.309.80_ JConnectors.311 _ JWith-Spare.312.1

object

II-M-P owe r-Syste m .30 d Jl-M-C rew.737 I
f

"applied
power"

"(B) Long term: The crewmen
check for "applied power" and the
crewman check for "connector
tightness". If the rc cannot then
be placed In operation, the rc is
removed and replaced with an
ORU logistics spare."

object

iI-M-Connectors.310I
F

"connector
tightness"

I-M-Correction- IAnd-Group.299.1226

failed-component

r-a-Generic-RC.422J
f

"re"

Figure 4.24

Failure Correction Mapping for RC.1 (Long Term)

"Failure effect on: (A) crew/SSPE: "-I-heconditionsassociated with the
None. The conditions associated replacement ... withinthe network are
with the replacement of a RC within such that the network is already in a
the network are such that the network I | reconflguredstate ..."
Is already In a reconfigured state I I-M-I-allure-I
supplying full services. I =ff-,c _ 12671 . 1 .

--------- /1'-" "" _,, Ii-Bypass-Node I
effected- / sequence-_ ' A
component// of-steps \ T

I I-M-Crew.737_ II-M-Bypass-Node-11771

f
"crew / SSPE"

/_ I-M-Failure- I
'(B) mission Effect. 1273J,,support: none."

effected- _ sequence-

component// "_of-steps

II-M-Mission-Support.10091 II-M-Null-Procedure. 1272 I

"mission support:" "none."

"(C) system:
none."

"(D) Interfaces:
none."

/_ I-M-Failure- IEffect. 1282_
effected- _ sequence-

component// _of-steps

II-M-Systems.480 I II-M-NulI-Procedure.12721

E
"system" "none."

,/_ I-M-Failure IEffect.1282_
effected- _ sequence-

component/" "X of-steps

II-M-Interfaces.10421 iI-M-NulI-Procedure.1272 I

"interfaces "none."

Figure 4.25

Failure Effects Mapping for RC. 1

I Text RC.1

I M-Case !

I-M-Case.1053

mode

I-M-Startup-

No-Output.1089
detection

I-M-Next-Node-

Detectio n. 1150

correction

I-M-Undefined-Correction.1238

oorrection

l-M-Bypass-

Node.1177

failed-oom I-M-Generic-RC.422]

II_M_Fau ity_Compo ne nt-Caus e.1094

I -M-Contamination-Cause-440 I

I I-M-Tempe ratu re-Out-Of- Range-Cause.443 I

I I-M-Mechanical-Shock-Cause.446

II-M-Thermal-Shock-Cause.449

effect

effect

effect

effect

l l_M_Failure-Effect.1267]

Ii_M_Failure-Effect.1273

lI-M-Failure-Effect.1282 I

Ii_M-Failure-Effect.1288 I

Figure 4.26

Case Representation for RC. 1

5. Comprehension of Input Text and Questions

In order to understand input segments of failure analysis manuals, FANSYS requires some

means of building a conceptual representation of natural language text in the domain of failure

detection, analysis, and repair. This task is performed by the parsing module of FANSYS, which

uses case-based parsing techniques (Riesbeck and Martin, 1986; Riesbeck and Schank, 1989) to

map input text into the underlying memory structures that characterize the conceptual content of

that text. As described in System Architecture (Section 3), failure cases are stored as frames

called MOPs within a multi-linked, hierarchical semantic network. This network encodes the

DMS fault domain, as described in Domain Knowledge Representation (Section 4). The parser

must create a mapping between a piece of text from the Failure Modes Effects Analysis (FMEA)

manuals and those MOPs that represent the concepts underlying that text. Such MOPs may

already exist within memory, in which case parsing is the recognition of those concepts and

relationships in a text that the system has already encountered. Alternatively, new MOPs may be

instantiated representing new instances of concepts that the system knows about but has not yet

encountered. The parser must also index these MOPs in such a manner as to make them available

during future text processing, and during question-answering sessions.

l-M-Power-Up-Event_/_'_"_"

I t'M'P°wer'°_ I i"M'P°w"'ur'l I"M'P°wer'°nl

f'- F-

I IIw cnm pmm_ up the dng
concenmd_"

Figure 5.1

Example mapping of text to conceptual representation for the power-up event

To illustrate the process of mapping text into its conceptual representation, consider figure

5.1 which shows the representation of the following sentence fragment: "the crew powers up the

ring concentrator." Conceptually, this text fragment describes an event wherein the crew

members of the space station apply power to one of the components of the DMS. As described in

the Domain Knowledge Representation Section, there are MOPs representing both powering

events and systems within the DMS. The MOPs corresponding to those entities from the text

fragment would be M-POWER-UP-EVENT, M-CREW, and M-RC. The task of the parser is to

recognize each of these events and systems from the text, and to create (or find) the MOPs in

memory which encode them. Figure 5.1 suggests the MOP representation that might be

referenced by the system for the powering-up text fragment. Note that different pieces of the text

map into different segments of the representation, and that there are parts of the representation

that are not referenced explicitly in the text. For example, the state transition between the power

36

beingoff and the power beingon (asrepresentedby the preconditionandresult slotsof I-M-
POWER-UP-EVENT)is implicit in the text, and is inferred from domain knowledge.

One approach to creating this mapping between text and its underlying conceptual

structures is to specify lexical patterns which capture the stereotypical use of language use. A

lexical pattern can form a link to the MOP which characterizes the content of that pattern. For

example, a pattern consisting of the words "ring concentrator" might map to the MOP M-RC,

since that is how ring concentrators are specified in English. The parser also needs to know that

"powering up" (when used in the context of an actor powering up a physical system) maps to the

M-POWER-UP-EVENT, and that by virtue of the rules governing English use, the actor of the

event will precede the words "powers up" and the object will follow. A general pattern that the

system could use to capture this relationship might be "(actor) powers up (object)," where the

actor is a concept representing an entity capable of performing a power up action, and the object

is a device capable of being powered up. In this scheme, the phrase "ring concentrator" would

map straight into M-RC and "the crew" would map into M-CREW. Note that this pattern is

general enough to also be used in the following case: "the system management powers up the

gateway," with "the system management" mapping into M-SM and "the gateway" mapping into

M-GW. The generality of the phrase "(actor) powers up (object)" captures a broad class of

mapping instances, which is a reflection of stereotypical language use.

Another point to be made about the parser is its language independence: the conceptual

representation mapped into by the parser should be independent of the surface form of the source

language. For example, the same MOP built to characterize the sentence "the crew powers on the

ring concentrator" should also be created for the sentence "the power system of the RC is

activated by the crew members." Processing this sentence entails using a different lexical pattern

to capture the notion of an event where an object "is activated by" someone, but the underlying

conceptual structures would be the same.

In addition to identifying the memory structures represented within the input text, the

parser must perform a number of other tasks to cohesively organize those structures. For

example, causal relationships between statements within the text must be recognized (e.g. through

application of inferential domain knowledge) and characterized. The salient components of a case

description, such as the failure causes, effects, and correction procedures must be recognized and

organized for a case instance. Procedures that are composed of multiple steps across several
sentences within a text must be constructed and organized. In each of these tasks, domain

knowledge, in the form of expectations as to what comprises a procedure, case, or abstract

relationship must be applied to the input text to further elucidate those relationships within the

text that are often left implicit.

Once the case has been constructed by the parser, it must be stored within memory in a

manner which insures that it is available during future parsings of text. This is facilitated by

indexing case descriptions with the ISA and slot-filler links described in System Architecture

(Section 3). As a case library is built up by the reading of successive texts, generalizations across

cases and across the components of a case (procedures, entities, events, etc.) should be drawn.

The cases are indexed with the generalization indexing hierarchical scheme to facilitate the

generation of such generalizations. This process of drawing these generalizations from text will

37

be further describedin the Memory Searchand Retrieval(Section6). The case library, built
incrementallyduring the processingof manuals,shouldthenbe availablefor questionanswering
tasks. Thesetasksrely on both theparsingprocess(to understandnatural languagequeries)and
thesearchandretrievalprocess(to find answersto thequeries).

Since the parser interacts with the Search and Retrieval Module during question-

answering sessions, it must work in a tightly coupled manner with memory search and retrieval

processes. To this end, the MOPs that are created and recognized by the parser are the same ones

used during memory search and retrieval; only the indexing hierarchies and the MOPs created as

generalizations are different across the two modules. The natural language question answering

shell described in User Interfaces (Section 7) is built directly on top of the Parsing Module.

Questions about cases are parsed with the same parser that is used to process cases; functional

knowledge associated with the memory structures activated by parsing a question are responsible

for generating the query used by the memory search and retrieval processes. This tightly-knit

integration of the two modules provides a flexible natural language query environment.

Parsing in the restricted domain of fault detection and correction for the DMS has some

ramifications for the parsing process. As figure 2.1 suggests, the text for the FMEA manuals is

highly stereotypical in format. Case descriptions are always given with sections for each of the

major components of a case, including the causes, effects, correction procedures, detection

procedures, and effects. The parser may take advantage of the standard format for a manual to

generate expectations about what it will see next in a text. For example, the text following the tag

phrase "Correction Procedure:" is likely to be a procedural description of how to correct a failure

in a DMS component. These expectations generated after recognizing a word or phrase allow the

parser to apply domain knowledge to help process the text at appropriate times.

Another feature of the restricted domain over which the texts deal is the manner in which

the task of disambiguation is made easier. The meaning of a word in any natural language can be

highly context dependent; words have multiple meanings, and the appropriate meaning is often

determined by context. In a restricted domain like that of the DMS, word meanings are highly

constrained. For example, the word "network" is likely to deal with a configuration of

communicating devices, as in a token ring network, rather than, say, a television network.

Likewise the word "ring" might appear as part of the name of a ring concentrator, or as part of a

token ring network, but would not be used in the sense of a wedding band. However, domain

restrictions do not to imply that all words are easily disambiguated within the domain. For

instance, the word "failure" is used within many different contexts; disambiguation typically

occurs by waiting to see what the subsequent word is, such as in "failure correction" versus
"failure mode."

The parser currently parses the case described previously for the failure of the ring

concentrator (see figure 2.1). The actual representation for that ease was shown in the Domain

Knowledge Representation Section (figure 4.26). Both the theoretical and implemented

processes used to parse this case will be discussed in the rest of this section, including a detailed,

annotated trace of the parser in operation. The processes involved in question-answering and text

generation will also be considered. Although only the one case is currently parsed by the system,

the same processes developed for the f'n-st case are applicable to any of the other cases the parser

38

may encounter. For example, the first gateway case, GW.1 (loss of output - failure to start)

involves the same modes, causes, and effects of the ring concentrator case shown in figure 2.1.

The same processes that construct the correction and detection procedures in the ring

concentrator will apply to the gateway; only the individual steps that describe the procedure and

the type of procedure are different. The methodology used by the parser and other components

of the system are designed to generalize across the whole corpus of FMEA manuals, creating a

system capable of understanding and operating within the DMS fault domain.

5.1 Case-Based Parsing

In FANSYS, comprehension of input text and questions is performed using the case-based

parsing techniques provided by DMAP, a Direct Memory Access Parser (Riesbeck and Martin,

1986; Riesbeck and Schank, 1989). In DMAP, parsing is viewed as a recognition process, i.e.,

the goal of the parser is to determine which memory structures best organize the input based upon

what the parser has already been exposed to. In reading the case describing a gateway failure, the

parser will automatically find many of the other case representations it has already seen and use

them to help understand the new input. The output of such a parser is the set of memory
structures that have been referenced in the understanding of a new text (such as part of some

other case), the new structures added to memory during the parse, and the set of expectations

about what will be seen next based on what was just read. In this view, parsing is tied directly to

the contents of memory; there is no notion of "outputting" some representation. Exactly what

occurs when something is referenced in memory is itself guided by the goals of the understanding

system, which are also represented in memory. In the case of FANSYS, the goal is to organize

the input in ways useful to characterizing the DMS fault domain, and to permit natural language

queries over the case library.

Since case-based parsing is seen as a recognition process, memory organization and search

are central to any case-based paradigm. MOP structures (Schank, 1982; Riesbeck and Schank,

1989) are used in FANSYS to represent linguistic, domain, and world knowledge. A MOP may

be used to represent a word, a concept, or any other semantically useful item within memory. The

Domain Knowledge Representation section already detailed several classes of MOPs used to

represent domain knowledge within FANSYS. In addition to those MOPs, there are MOPs for

each word that the system knows about, as well as MOPs called index patterns (Pdesbeck and

Martin, 1986; Riesbeck and Schank, 1989) which represent stereotypical mappings of natural

language into their corresponding concepts. These index patterns drive the parsing process.

Other MOPs represent processing knowledge the system has to aid in constructing case

descriptions. MOPs are used to implement all knowledge constructs at every level of abstraction

and functionality within FANSYS.

MOPs represent nodes in a semantic network, and are organized hierarchically along two

parameters that are crucial to the parsing process: the slot-filler hierarchy and the ISA hierarchy.

The slot-filler hierarchy links together a MOP with its conceptual subcomponents; for example,

the MOP representing an action would organize at least two MOPs in the slot-ftller hierarchy: one

for the MOP representing the actor, and one for the MOP representing the object being operated

upon. MOPs organized within the slot-f'tller hierarchy thus implement a frame-based

representation of knowledge. The ISA hierarchy organizes MOPs based on their conceptual

39

abstractions,from most generalconcept to most specific. Thus, the MOP for the power-up

action would have as an abstraction the MOP representing power actions in general, which in turn

would have an abstraction representing generic actions, and so on. Other specific action MOPs,

such as transmission and connection actions would also have the generic action MOP as their

abstraction.

MOP-specific processing strategies can also be associated with any given MOP in

memory. The processing strategies (called associated functions) are executed whenever a MOP is

referenced during parsing or during other processing. Similarly, contextual constraints may be

associated with a MOP, which inhibit its activation during a parse if contextual requirements are

not met. Thus, domain specific processing strategies, knowledge specific functionality, and

contextual requirements are represented and stored with the MOP to which they pertain, and are

invoked only when needed. This approach gives the system flexibility in specifying the precise

processing characteristics required for different knowledge constructs, and insures that processing

proceeds in an integrated manner.

The actual parsing of a text involves the recognition of slot-filler relationships between

concepts in a given text. To specify these relationships, FANSYS employs index patterns, which

represent stereotypical uses of a target natural language. For example, the pattern { (actor)

powers up (object) } => M-POWER-UP-EVENT specifies that a power-up event can be

recognized if an actor concept followed immediately by the words "powers up" followed by some

object concept is recognized from the input text. The actor and object concepts are slots in the

power-up event representation; the index pattern represents the linguistic or conceptual

relationship between those slots as expressed in English. Patterns are associated with the MOP

that they reference and the MOP with which they are stored by lexical links.

These index patterns also specify lexical and (implicitly) semantic constraints. In the

example of the powering-up event, the words describing the actor mop are required to be adjacent

to the words "powers up" in order for the pattern to be recognized. Patterns thus implicitly

encode syntactic features of a target language. Concepts specified within an index pattern are

further constrained by filler restrictions specified within the MOP to which the slot pertains. In

the powering-up example, the object in the pattern is constrained to be some mechanical device

(e.g. a system) capable of being powered up.

Index patterns are useful for capturing lexical relationships between concepts within text.

There are, however, more loosely constrained conceptual relationships which may occur in a text

that are not lexicaUy based. In a case description within a FMEA manual, for example, the system

needs to know that there are certain components to a case that it should expect within the text:

the failure mode, the correction procedures, the effects, etc. These may occur in any order in

general (although as mentioned earlier, the FMEA manuals are quite stereotypical in the ordering

of the case components -- this may not be the case in other manuals). High level index patterns

(HLIPS) exist that capture these kinds of relationships. One example of this type of pattern is {

failed-component mode cause detection correction effect } => M-CASE. This pattern indicates

that the system should collect any instances of failed components, modes, causes, etc. together

that it sees in a text, and use them as slot fillers for a case MOP. These patterns describe the high

level organization of a target text. One characteristic of these patterns that contrasts to lexical

40

indexpatternsis thatall componentsof thepatternneednot bepresentin thetext; theHLIPsjust
encodepredictionsaboutwhatmayor maynot beseenin thetext.

In additionto lexicalpatternsandHLIPs, other typesof processingstrategiesareneeded
to apply domainknowledgein building a coherentrepresentationof a case. Thesetypes of
strategiesimplementa form of inferencegeneration.Inferencesneedto bedrawnin manycases
becausemuchis often left implicit in a text that needsto bemadeexplicit in orderfor the system
to tie togetherrelationshipsand conceptswithin a text. Considerfor examplethe sentence:
"Indicationof a RC failure is first detectedby thenext activenodeon thenetwork." The phrase
"next activenode on the network" is enoughto recognizethe relationshipof two functioning
nodeson the network,oneof which is in somesensethenext nodeto the other (in the senseof
theorderedpassingof a tokenin a tokenring network,for example).Thefact that thenextnode
is itself a ring concentrator,and that it is waiting for a token from the failed node,are all left
implicit, and must be inferred from the understander'sdomain knowledgeabout token ring
networks.

Anothertypeof inferentialstrategy is that which pulls together steps from a procedures,

determines which procedure is being referenced, and then recognizes that procedure. Consider

the following correction procedure from the first case description: "The crewmen check for

applied power and check for connector tightness. If the RC cannot then be placed in operation, it

is removed and replaced with an ORU logistics spare." The fragment details essentially three

steps to a procedure: checking for power, checking the connectors, and replacing a unit with a

spare. These three steps form a procedure for correcting a failure. The parser must be able to

recognize that these events are steps in a procedure, and then to recognize the procedure in

memory that is being referenced. In this case, it is the procedure called M-NON-

OPERATIONAL-REPLACEMENT, described earlier in figure 4.24.

These inferential strategies are generally attached to specific nodes in memory that get

referenced during a parse. For example, the procedure building strategy is attached to the MOP

for an abstract event, so that any event that is referenced during a parse will execute it. Inferences

are thus localized to the MOPs to which they apply, and are activated naturally in the course of

the recognition of those MOPs. The mechanisms for implementing these strategies, and for the

parsing of text in general, are described next. An annotated trace will also exemplify these

processes.

5.2 Parsing Input Text

As mentioned in the previous section, the stereotypical use of natural language is captured

through the use of lexical patterns (called index patterns) which map text into the memory

structures underlying the conceptual content of that text. Index patterns are themselves MOPs,
indexed via lexical activation links with the MOP that is most predictive of the pattern, and with

the MOP to which the pattern refers via lexical reference links. In the example of IPI: { (actor

M-SYSTEM) powers up (object M-ENTITY) } => M-POWER-UP-EVENT, the pattern would

be stored with the lexical MOP for the word "powers," since that is the most relevant dement in

the pattern to its recognition. The pattern should not be stored with the M-SYSTEM MOP

(which is the filler for the actor slot), for example, because actors appear in many different

41

patternsandcontexts. IP1 would also have a link to the MOP M-POWER-UP-EVENT, since

that is the MOP characterized by the pattern. If a MOP is referenced in the text or through

subsequent processing, any index patterns that are associated with that node are activated. For

example, anytime the MOP for the word "powers" is referenced in the text, pattern IP1 becomes

activated. If the elements that appear prior to that MOP in the pattern have occurred in the text in

the proper lexical order (i.e. lexical adjacency requirements are met), then the pattern is

considered active and will be tracked. In the example if IP1, the M-SYSTEM MOP would have

had to have been referenced just prior to the MOP for the word "powers" in the previous pattern.

Once a pattern is tracked, a prediction is generated about what will appear next in the text based

on that pattern. To continue the example, the parser would predict that the MOP for the word

"up" will appear next in the text. If this prediction fails, the pattern is abandoned. If the

prediction is confirmed, then the pattern will be further advanced, and the next element of the

phrase predicted (in the example of IP1, it would be the node representing the object slot filler,

M-ENTITY). When all of the elements of a pattern have been recognized in the text, the target

of the pattern is recognized with its slots filled based on the text. In the example "the crew

powers up the ring concentrator," an instance of the M-POWER-UP-EVENT MOP would be

instantiated with the slots of (actor I-M-CREW) and (object I-M-GENERIC-RC).

The application of index patterns involves a mixture of bottom-up and top-down

processing. Bottom-up processing occurs in the recognition of lexical units (words, usually) from

the input text. These words may trigger the activation of index patterns, which then spawn

predictions about what will be seen next in the text. Subsequent words or concepts may fulfill

top-down expectations as generated by index patterns, as in the prediction of the word "up" or the

concept of M-ENTrrY in IP1. Patterns which are fully recognized lead to the activation of new

MOPs, which may themselves have index patterns associated with them. The output of the parser

after reading a text is thus the memory structures that have been created or recognized to

organize the input, and the new predictions that are pending based on that reading.

Index patterns are def'med as in figure 5.2. The parts of the definition in square brackets

are optional. The syntax-category attribute is a simple method of encoding syntactic constraints

to be used during generation. (See the section on Generation for more details on the use of

syntactic categories; they do not effect parsing.) The target is the MOP to be activated if all of

the elements of a phrase are recognized; the target thus specifies the lexical activation link.

Elements (eleml ... elemn) may be either words (lexical nodes) or concepts in memory. The

:terminator specifies when the pattern should be destroyed if it hasn't been recognized. This is

typically set to be M-HARD-PUNCTUATION (e.g. when a period is parsed), and is used in the

cleaning up of abandoned patterns. The :store node specifies which of the elements of the pattern
should be used as the lexical activation link; that is, which element is most predictive of the

pattern. The :gen and :nogen fields are used during generation; see the Generation subsection for

more details, as they do not influence parsing directly. Finally, the :opt allows the system to

specify optional elements of a pattern. These elements need not appear in the text in order for the

whole pattern to be recognized. If they are in the text, they are parsed as part of the pattern, but

they are ignored otherwise. The definition specifiers given in figure 5.2 allow index patterns to be

def'med with a fair degree of generality. See appendix C for a listing of the pattern definitions

used by the system.

42

(defphrase [syntax-category] target eleml [elem2 ... elem n]
[.'termination termmop] [:start elem-number] [:gen] [:nogen] [:opt optlist])

Figure 5.2
Index Pattern Structure

In addition to index patterns, there is also a class of closely related structures called

higher-level index patterns (HLIPS). These are similar to normal index patterns, except that they

do not require that any adjacency requirements be met. HLIPS typically capture relationships that

occur across large sections of a text that are not order dependent. For example, case descriptions

have a number of features including the correction and detection procedures, the failure causes

and modes, the failure effects, and so on, that could in principle appear in any order within a

manual description. There is thus a I-ILIP defined that looks for instances of each of those

features and collects them together to create a case MOP. Appendix C also details those patterns

as used to parse the first ring concentrator case.

5.2.1 Marker Passing

Mention has been made of the generation and fulfillment of predictions from index

patterns, as well as the recognition (or activation) of structures within memory. These features

have been implemented in the FANSYS parser using a marker passing algorithm suggested (but

not implemented) in microversion of DMAP appearing in (Riesbeck and Schank, 1989). Marker

passing may be defined as the propagation of structured objects over some representational
network. The intersection of markers during this propagation typically allows useful work to be

performed. (See (Hendler, 1988) and (Norvig, 1989) for an introduction to marker passing

methods in general.)

In FANSYS, two types of markers are propagated: prediction markers and activation

markers. Prediction markers are passed to nodes in memory which are predicted by advancing

index patterns. These markers contain backpointers to the index pattern (or other MOP

processing structure) which generated it. Activation markers are passed to MOPs and their

abstractions which have been referenced in input text, or have been activated by other means (e.g.

by activating the target node of a recognized phrase). The collision of these two types of markers

at a MOP in memory represents a fulftlled expectation. The node that generated the prediction is

subsequently informed of fact that the prediction was satisfied. Activation markers thus keep

track of the state of activation within memory; that is, which MOPs have been recognized during

the parsing of text. Prediction markers keep track of the state of expectations within the system.

Together, these markers implement an efficient scheme for generating and fulfilling predictions

within FANSYS.

Figure 5.3 shows the structure of an activation marker. The parent of an activation

marker is a backpointer to the node which was initially activated (since markers may be passed

around the ISA hierarchy, a backpointer to the original node is necessary). The owners attribute

is a list of all of the MOPs which have been passed the activation marker; this is just a device to

aid in the eventual removal of the markers from the system. The start and finish attributes are

used by index patterns to enforce adjacency requirements. When an index pattern is fast

43

instantiated,it is given the "start" valueof a counterwhich is incrementedby oneevery time a
word is readin the text. When thepatternis fulfilled, thevalueof "finish" is setto the current
valueof the counter. Whena nodeis referencedby anindexpattern, it in turn inheritsthe start
andfinishvaluesof thepatternfor its activationmarker. Thesevaluesarethenusedwithin other
index patternsto enforceadjacencyof conceptsand wordsin the pattern. Adjacency may be

determined by noting that two nodes are adjacent if and only if the finish attribute on the marker

of the f'n'st node is one less than the start attribute of the marker on the second node.

parent

owners

start finish

Figure 5.3
Activation Marker Structure

The structure of a prediction marker is demonstrated by figure 5.4. The only information

stored with a prediction marker is a backpointer to the MOP which spawned the prediction. This

pointer is used to inform the predicting node of the fact that the prediction was fulfilled.

parent [

Figure 5.4
Prediction Marker Structure

The basic marker passing algorithm which implements the prediction/activation mechanism

is an adaptation of the one presented in (Riesbeck and Schank, 1989). It consists of the following

four rules for passing markers:

Activation Markers

• When a word is read from the input text, an activation marker is given to the

corresponding lexical node.

• When every dement of a phrase receives an activation marker, the target concept

attached to the phrase receives a marker.
• When a node receives a marker, it sends copies to all of its abstractions up the

ISA links.

Prediction Markers

• When an element of a phrase in an index pattern receives an activation marker, the

next dement in the phrase gets a prediction marker.

44

The collision of an activationand a prediction markercausesthe parent node of the
predictionto beactivated.Associatedfunctionsfor that MOPmaythenguideprocessingto deal
with thefulfilledexpectation.Foreexample,anindexpatternnodethat is activatedby a fulfdled
predictionhas functionalknowledgethat would advancethe patternone element,filling in any
appropriateslots,or thatwouldactivatethetargetnodeif all elementshadbeenrecognized.

Onefinal note concerningthe markerpassingalgorithmis worth making. This marker
passingschemeis independentof the configurationof memory,andthus is independentof the
domainin which it operatesand sourcelanguagewith which it is concerned. It is a general
mechanismfor implementingactivation,expectations,andfulfilledpredictions.Note on the other
handthat the actual comprehensionof text is dependenton the memoryconfiguration,since
differentmemorystructuresanddomainknowledgewill causea differentpatternof activation
throughoutmemory.

5.2.2TheParsingAlgorithm

The actualprocessof parsingtext into the internalrepresentationthat characterizesit is
foundeduponasimplealgorithm:

1.Get thenextword from the text.

2. a) If a lexical node exists in memory corresponding to that word,

activate that node.

b) Otherwise, create a lexical node for that word and index that MOP
under the MOP M-UNKNOWN-WORD.

Each word that FANSYS knows has a corresponding MOP in memory. Words are parsed

from left to right, with each MOP corresponding to a word being activated when that word is

read (the concept of activation will be discussed in a moment). Words that are not recognized are

added to memory as lexical nodes, but are indexed as unknown words. This is allows the

administrator of the system to notice new words and add any corresponding processing

knowledge to the system to handle that word. (In future implementations of the system, it may be

possible to have the system implement learning strategies for unknown words automatically,

based on the context in which the word occurs; such strategies could be stored as functional

knowledge with the MOP M-UNKNOWN-WORD.)

Activation is the fundamental memory operation for the parser. A node is activated if it

has some relevance to the processing of the input text. (The notions of the recognition of a MOP

and the activation of a MOP are used interchangeably within this report.) The activation

operation consists of the following six steps:

45

.

.

.

.

5.

.

The mop is specialized to an appropriate instance, if there are any specific

slots passed to the activation function. This may involve finding a prior

instance in memory that matches the MOP and its slots, or it may involve

creating a new instance of the MOP in memory.

An activation marker is created for the node. If the node is activated with

an activation marker passed to it, it gets a copy of that marker. Otherwise,

a new marker is created for this node.

Any functions associated with that node are executed. These functions

typically encode the structure-specific (semantic) content of that node

(i.e. how to process it).

All of the index patterns which are stored with this MOP via lexical

activation links are activated.

If this node was predicted (because prediction markers were passed to

it previously), then the predictions are fulfilled by activating the MOP

or MOPs that predicted it.

All of the abstractions of this node are activated, and are passed this

node's activation marker.

Whenever a concept in memory is activated, it is specialized to the most specific instance

of that MOP that matches the input. Typically, an abstract MOP is activated with a set of slots

and fillers specified. Consider the example presented earlier, where the M-POWER-UP-EVENT

MOP is activated with the slots of (actor I-M-CREW) and (object I-M-GENERIC-RC). If the

parser has already seen an instance of M-POWER-EVENT with the specified slots, it would find

that instance and activate it. Otherwise, the parser is seeing novel text, and must create a new

instance of the MOP with the appropriate slots. (This new instance may cause some

reorganization of memory, since the Memory Creation and Retrieval module may use it to draw

generalizations about the text; see the section on Memory Creation and Retrieval for more

information.) This process of specialization demonstrates how the parser uses a case-based

approach: new input text is mapped onto already existing (i.e. previously experienced) memory

structures, if such structures are available. Memory content (experience) guides parsing. Since

new MOPs are built during parsing if no suitable MOPs exist in memory, parsing changes

memory. If a text is read twice, most of the processing (the creation of all new MOPs) occurs

during the first reading; the second time around, the text is mapped onto the same structures used

or created during the fh'st reading. Thus, FANSYS learns from reading a text, making subsequent

processing of similar material more efficient.

When a MOP is activated, any functions associated with that MOP are executed. This

allows MOP-specific processing strategies to be executed only as needed. For example, the code

that handles the processing of index patterns is stored with the abstract node M-INDEX-

PATTERN. Whenever an index pattern MOP is activated, this code gets executed, and the

pattern is processed. Thus, the parsing process involves domain- and MOP-specific processing in

addition to the domain-independent processes described in the previous algorithms. FANSYS'

parser can therefore be viewed as a distributed parser, since domain and knowledge specific

parsing strategies are stored throughout memory as needed, and come into play only when such

associated MOPs are activated. This also provides an adaptable and extendible environment,

46

sincenewdomainscanbeaddedto themodelbydefiningtheMOPsrequiredfor thatdomain,and
byspecifyinganyspecialprocessingrequirementswith thoseMOPs.

AnothereventwhichoccurswhenaMOPis activatedis theactivationof all of that MOP's
abstractions.This capturesthe notionthat whenone is talkingabout M-POWER-UP-EVENT,
oneis alsotalking aboutpoweringeventsin general(e.g.M-POWER-EVENT),aswell asgeneric
events(M-EVENT). Sinceindexpatternscandefinetextual relationshipsat varying levelsof
abstraction,this mechanismallowsthe parsingof input text to also occur on multiple levelsof
generalitysimultaneously. For example,the M-POWER-UPevent may have index patterns
associatedwith it, as may the M-EVENT MOP; thesepatternswould vary in terms of their
generality,buteachwouldbecomeactivatedwhenapowerdowneventis processedin thetext.

Sincethe activationof aMOP usuallyleadsto the subsequentactivationof severalother
MOPs,includingabstractions,indexpatterns,predictingnodes,and soon, the parsingof a word
typically involvesthespreadingof activationoverseveralpartsof thememoryof FANSYS. This
spreadingactivation is constrainedby the algorithm,but allows processingto flow to those
structureswhich are required to processthe text. This provides an efficient and domain-

independent method for understanding text, but one which is still guided by the actual content of

the domain representation.

5.2.3 Domain-Specific Inference Strategies

In addition to the normal flow of control detailed by the parsing algorithm and the tracking

of index patterns, some domain specific inferencing strategies are implemented which also effect

the processing of an input text. These inferencing strategies are generally attached to specific

processing MOPs as associated functions. Such processing MOPs may become activated by

higher level patterns or through explicit activation by other associated functions. These strategies

represent domain-specific parsing knowledge, and are inferential in that they typically involve

processing that makes relationships and concepts that are implicit within a text explicit.

One example of such an inferencing strategy is the functionality which constructs and

recognizes procedures within textual descriptions. Procedures occur within the text in two

primary contexts, that of the detection procedure and the correction procedure. Procedures are

usually specified in one of two ways (as has been determined by a study the input manuals). In

the first case, a pointer to the class of procedure is given as the first sentence of the textual

description, followed by one or more events which serve to disambiguate which instance of that

class is being recognized. For example, consider the failure detection procedure of the first ring

concentrator case, RC.1 (see figure 2.1). The first sentence of this description, "Indication of a

RC failure is In'st detected by the next active node on the network," is a pointer to the class of

detection procedures in which a failure is detected by another node noticing that some expected

communication with it has failed to occur. The next sentence, "Local system management will

reach a time-out limit for receipt of the network token," is an event which disambiguates the

detection procedure. In this case, since the event details a token circulating around a token ring

which fails to be passed to a node, the parser may determine that the procedure in question is the

M-NEXT-NODE-DETECTION procedure.

47

The secondclassof proceduralrecognitionstrategiesoccurswhena text elaboratestwo
or more stepsof a procedure. In this case,the parsermust recognizeeach step, pull them
together,andinferwhichprocedurein memoryis beingreferencedby the text. As anexampleof
thisclass,considerthe long-termcorrectiveprocedureof RC.1. In this example,threestepsare
mentionedin the text: checking for appliedpower, checking for connector tightness,and
replacing the spare. These are three steps of the procedure M-NON-OPERATIONAL-
REPLACEMENT,which mustberecognizedandactivatedduringtheparseof RC.1.

Eachof these two casesrequiresa specificstrategy implementation to determine the

procedure being referenced (and thus to ultimately activate that procedure in memory), although

the fundamental functionality is the same in both cases. In the ftrst case, a pointer is given to the

• class of procedures involved, which significantly reduces the space of procedures which much be

searched for the target procedure. In the second case, the library of all procedures (correction or

detection, depending on context) must be searched. Once the search space is determined by the

strategy type, the next step is to collect together the subsequent events in the text, and determine

which procedure they comprise. It should be noted that usually not all of the events in a

procedure are specified in a text; many are left implicit, with the assumption that the reader's

domain knowledge will be sufficient to fill in the missing details. Since all of the events must be

collected together, a processing MOP is activated by the first event to occur in the text which will

keep track of all of the events that are subsequently referenced (this activation occurs by virtue of

an associated function attached to M-EVENT). This MOP subsequently predicts that it will see

more events by passing a prediction marker to M-EVENT each time it is activated. If that

prediction is fulfilled, the processing MOP will again be activated, and it can deal with the new

event, and predict that it will see yet more events. Once the procedural context is left by parsing a

new section of the text, the processing MOP considers all of the events it collected and

determines which procedure was referenced.

The algorithm for determining which procedure is to be inferred from the collected events

is a simple one. Each event step contains a back pointer to each procedure in which it occurs. (In

fact, all MOPs contain a backpointer to any other MOPs in which it occurs as a slot filler.) Since

an event may occur in more than one procedure, there may be several such backpointers. Once all

of the steps are collected together, the processing MOP intersects all of the backlminters together

from all of the events; this intersection is likely to be just one MOP, the procedure which

packages all of the steps. If more than one MOP is in the intersection set, than some other

method may be required to further disambiguate the procedure. As our corpus of procedures is

limited by the number of cases that are dealt with, this has not proven necessary -- the process of

intersecting the backpointers has proven sufficient to uniquely determine all procedures tested. It

is recognized however that with a more extensive library of procedure descriptions, a more

generalized approach to procedural referencing may be necessary. Once the procedure has been

identified by whatever means, it is activated and the processing MOP created for the recognition
task is terminated.

There are several other miscellaneous inferencing strategies that are employed to process

the text for RC.1 (see figure 2.1). One example of this is the disambiguation of the word "none"

in the failure effects procedures. There are two practical meanings of the word "none" in this

context. The first is exemplified by the failure effects on the crew in RC. 1. Although the effect is

48

listed as none, there actually is one effect on the crew; they must implement the correction

procedure described by the text after the word "none". This text is almost always a pointer back

to one of the correction procedures described earlier in the case. The task of the parser here is to

infer that the real effect is the correction procedure described next in the text. The inferencing

function (associated with the word "none" when it appears in the context of the effects section of

the text) must therefore search back over the correction procedures to find the one which best

matches the text in the given effects text. In the case of RC.1, the phrase "the conditions

associated with the replacement of the RC" is enough to disambiguate between the two correction

procedures, since the procedure M-NON-OPERATIONAL-REPLACEMENT is the one that

involves an event with the crew replacing a spare RC. For the other effects, where there is no

subsequent text after the word "none", the parser must infer that the default procedure M-NULL-

PROCEDURE is the actual effect (i.e. that there is indeed no effect). This is the second practical

meaning of "none" in this context.

Some other inferencing procedures implement contextual constraints and miscellaneous

disambiguation functions. These will not be described here in any detail. The interested reader is
invited to examine the code for more details. It should be noted that although most of the

inferencing strategies are founded upon a generalized theory of what should constitute a

reasonable inference, it is not claimed that all of the inferencing strategies implemented to parse

the first case are of a general nature. Some strategies will undoubtedly generalize as more cases

are processed by the system.

5.2.4 An Annotated Example

To illustrate the processes that have been discussed in the prior subsections, consider the

actual trace output of the parser as it parses the first ring concentrator ease, RC.1. The trace is

highly edited due to spatial considerations; only features which illustrate relevant processing will

be left intact. Interested readers should consult Appendix B for a complete copy of the trace.

Note also that details will be omitted once they have been covered in the trace; this will have the

effect of creating a sparser trace as this subsection progresses.

>(parse

Parsing

rc.1)

(ITEM NAME *COLON* RING CONCENTRATOR FAILURE MODE *COLON* LOSS
OF OUTPUT - FAILURE TO START FAILURE CAUSES *COLON*
PIECE-PART FAILURES *COMMA* CONTAMINATION *COMMA*
TEMPERATURE *LEFT-PAREN* HIGH OR LOW "RIGHT-PAREN*
COMMA MECHANICAL SHOCK *COMMA* THERMAL SHOCK FAILURE
DETECTION *SLASH* VERIFICATION *COLON* INDICATION OF A RC
FAILURE IS FIRST DETECTED BY THE *QUOTE* NEXT *QUOTE*
ACTIVE NODE ON THE NETWORK *PERIOD* SYSTEM MANAGEM ENT
WILL REACH A TIME-OUT LIMIT FOR RECEIPT OF THE NETWORK
TOKEN *PERIOD* CORRECTIVE ACTION *COLON* *LEFT-PAREN* A
RIGHT-PAREN SHORT TERM *COLON* NETWORK RECONFIGURATION
IS EFFECTED AUTOMATICALLY *PERIOD* THE DMS NETWORK
REMAINS IN OPERATION IN A RECONFIGURED STATE WITH THE
FAILED RC BYPASSED *PERIOD* *LEFT-PAREN* B *RIGHT-PAREN*
LONG TERM *COLON* THE CREWMEN CHECK FOR *QUOTE* APPLIED
POWER *QUOTE* AND THE CREWMEN CHECK FOR *QUOTE* CONNECTOR

49

TIGHTNESS *QUOTE* *PERIOD* IF THE RC CANNOT THEN BE
PLACED IN OPERATION *COMMA* THE RC IS REMOVED AND
REPLACED WITH AN ORU LOGISTICS SPARE *PERIOD* FAILURE
EFFECT ON *COLON* *LEFT-PAREN* A *RIGHT-PAREN* CREW
SLASH SSPE *COLON* NONE *PERIOD* THE CONDITIONS
ASSOCIATED WITH THE REPLACEMENT OF A RC WITHIN THE
NETWORK CONFIGURATION ARE SUCH THAT THE NETWORK IS
ALREADY IN A RECONFIGURED STATE SUPPLYING FULL SERVICES
PERIOD *LEFT-PAREN* B *RIGHT-PAREN* MISSION SUPPORT
COLON NONE *PERIOD* *LEFT-PAREN* C *RIGHT-PAREN* SYSTEM
COLON NONE *PERIOD* *LEFT-PAREN* D *RIGHT-PAREN*
INTERFACES *COLON* NONE *PERIOD* *EOC*).

The parser begins by processing the text in a word-for-word manner. The first word,

"item", is activated as described in the activation section. This includes activating the word, its

abstractions, any index patterns associated with it, and so on.

Reading ITEM
Recognizing: M-IP.388
Creating: I-M-IP.388.417
Specializing: I-M-IP.388.417
Recognizing: I-M-TERMINATOR.323

(ITEM * NAME *COLON*) = M-ITEM-CONTEXT

In activating the word "item", one index pattern has been found which is stored with that

word. This pattern is activated. As usual in the activation process, the concept is recognized, and
an instance is created for it. FANSYS then determines whether it has seen this input before by

trying to specialize the input into an existing memory structure. If it is successful, the parser will

throw away the new instance and activate the prior occurrence. Otherwise, it will store this new

instance in memory. In this case, the index pattern is a new one, and so is added to memory. The

I-M-TERMINATOR.323 MOP is a bookkeeping MOP which controls when this pattern will be

killed. The designer of the lexical phrases may specify when a given phrase should be terminated;

the default is at the end of a sentence. The MOP M-ITEM-CONTEXT is a MOP which specifies

that the current context is that of the failure item. Within this context, any devices that are

specified are interpreted as the failed component(s) of the case. In order for this context to be

activated, the full tag of "item name:" must be encountered in the text. The model is thus relying

on the stereotypical format of the case manuals to determine the context in which it is processing.

Notice that if the phrase "item name:" is encountered anywhere within the text, the parser will

activate this context. This has the potential of confusing the system, but the manuals are generally

structured such that this is not a problem.

Reading NAME
(ITEM NAME * *COLON*) -- M-ITEM-CONTEXT

Here the pattern continues to be tracked by the system.

Reading *COLON*
(ITEM NAME *COLON* *) = M-ITEM-CONTEXT referenced

Recognizing: M-ITEM-CONTEXT
Creating: I-M-ITEM-CONTEXT.418
Specializing: I-M-ITEM-CONTEXT.418

50

Recognizing:M-CONTEXT
Creating:I-M-CONTEXT.420
Specializing:I-M-CONTEXT.420
Removing:I-M-IP.388.417

Since the whole phrase has been recognized, the target of the phrase, M-ITEM-

CONTEXT is activated. The functional knowledge associated with this MOP activates the

general M-CONTEXT MOP, which is tasked with the responsibility of maintaining the current
context. The M-CONTEXT MOP in turn makes note of the new context. This context inhibits

the activation of some higher level patterns and allows the activation of others. Specifically, it

will allow the activation of those high level patterns which keep track of the failed-component slot

for a case, and inhibit the activation of patterns that are used in the other contexts. The last bit of

processing involves removing the fulfilled index pattern from the system.

Reading RING
(RING * CONCENTRATOR) = M-GENERIC-RC

For index patterns, the recognize/create/specialize/termination sequence will be edited out

from here on and only the pattern will be shown as it is tracked.

Reading CONCENTRATOR
(RING CONCENTRATOR *) = M-GENERIC-RC referenced

Recognizing: M-GENERIC-RC
Creating: I-M-GENERIC-RC.422
Specializing: I-M-GENERIC-RC.422
Recognizing: M-HL-PAT'FERN.387
Creating: I-M-HL-PA'I-I'ERN.387.423
Specializing: I-M-HL-PA'I-i'ERN.387.423
Removing: I-M-IP.327.421

With this word, the pattern recognizing a generic instance of a ring concentrator is

fulfiUed, and that instance is activated. This causes a high level pattern to be activated; this

pattern collects any references to ORUs within this context, so that the appropriate failed-

component slots may be added to the case.

Reading FAILURE

Note that no phrases are associated with the word failure, since it is not particularly

predictive in this domain.

Reading MODE
(FAILURE MODE * *COLON*) = M-MODE-CONTEXT

Here is an example of a phrase that is stored with a concept other than the first element of

the phrase. In this case, the parser checks to verify that the concepts in the phrase prior to the

word "mode" are present in the proper lexical order. This is accomplished by checking the

activation markers associated with the words or concepts in the phrase to see if they were

activated at the appropriate time. Had they not been, the phrase would be terminated at this

point. This particular phrase survives the test, and so is tracked. Note that it is a phrase that may

establish a new parsing context.

51

Reading *COLON*
(FAILURE MODE *COLON* *) = M-MODE-CONTEXT referenced

Specializing: I-M-MODE-CONTEXT.425
Removing: I-M-CONTEXT.420
Specializing: I-M-CONTEXT.427
Removing: I-M-IP.389.424

The recognition/creation of ordinary concepts is now abbreviated from this point on. The

M-MODE-CONTEXT establishes a new context for the parser, there is now an expectation that

failure modes will be processed next. With this new context, the old context is destroyed. At this

point, the failure components that have been collected together (in this case, just M-GENERIC-

RC) are added to the case (this is not reflected in the trace). Every time a new context is

encountered, any processing in the prior context is resolved and terminated. This typically

involves the addition of new slots to the case description. It is necessary to wait for the new

context to finish processing, since the parser has no other means of determining when a section of

the text is finished (people might rely on white space between sections, for example).

Reading LOSS
(LOSS * OF OUTPUT - FAILURE DURING OPERATION) = M-OPERATIONAL-NO-OUTPUT
(LOSS * OF OUTPUT - FAILURE TO START) = M-STARTUP-NO-OUTPUT

Two phrases are attached to the word "loss". Both will be tracked simultaneously until

the patterns are either fulfilled, or terminated due to a failed lexical prediction.

Reading OF
(LOSS OF * OUTPUT - FAILURE TO START) = M-STARTUP-NO-OUTPUT
(LOSS OF * OUTPUT - FAILURE DURING OPERATION) = M-OPERATIONAL-NO-OUTPUT

Reading OUTPUT
(LOSS OF OUTPUT * - FAILURE DURING OPERATION) = M-OPERATIONAL-NO-OUTPUT
(LOSS OF OUTPUT * - FAILURE TO START) = M-STARTUP-NO-OUTPUT

Reading -
(LOSS OF OUTPUT - * FAILURE TO START) = M-STARTUP-NO-OUTPUT
(LOSS OF OUTPUT - * FAILURE DURING OPERATION) = M-OPERATIONAL-NO-OUTPUT

Reading FAILURE
(LOSS OF OUTPUT - FAILURE * DURING OPERATION) = M-OPERATIONAL-NO-OUTPUT
(LOSS OF OUTPUT - FAILURE * TO START) = M-STARTUP-NO-OUTPUT

Reading TO
(LOSS OF OUTPUT - FAILURE TO * START) = M-STARTUP-NO-OUTPUT

At this point, one of the phrases fails to advance because of a failed lexical prediction. This phrase is no
longer tracked by the system and will be removed at the appropriate time (i.e. when the end of a
sentence is encountered).

52

ReadingSTART
(LOSS OF OUTPUT - FAILURE TO START *) = M-STARTUP-NO-OUTPUT referenced

Specializing: I-M-STARTU P-NO-OUTPUT.430
Specializing: I-M-HL-PA']-I'ERN .387.431
Removing: I-M-IP.370.429

A high level pattern collecting together failure modes is now activated. At this point in the

trace, the removal of index patterns will be omitted, except in noteworthy circumstances.

Reading FAILURE

Reading CAUSES
(FAILURE CAUSES * *COLON*) = M-CAUSE-CONTEXT

Reading *COLON*
(FAILURE CAUSES *COLON* *) = M-CAUSE-CONTEXT referenced

Specializing: I-M-CAUS E-CONTEXT.433
Specializing: I-M-CONTEXT.435

A new context is established in which the parser has expectations that faihLre causes will

be processed next. The processing for failure modes is now wrapped up, with a slot for the

failure mode I-M-STARTUP-NO-OUTPUT.430 being added to a case (again, this is not reflected

in the trace).

Reading PIECE-PART
(PIECE-PART * FAILURES) = M-FAULTY-COMPONENT-CAUSE

Reading FAILURES
(PIECE-PART FAILURES *) = M-FAULTY-COMPONENT-CAUSE referenced

Specializing: I-M-FAULTY-COM PON ENT-CAUSE.437
Specializing: I-M-HL-PATTERN.387.438

I-M-HL-PATTERN.387.438 is a pattern which collects together failure causes.

Reading *COMMA*

Reading CONTAMINATION
(CONTAMINATION *) = M-CONTAMINATION-CAUSE referenced
Specializing: I-M-CONTAMINATION-CAUSE.440
Specializing: I-M-HL-PATTERN.387.441

Note that "contamination" is a fairly common word, and it activates the MOP M-

CONTAMINATION-CAUSE each time it is encountered. However, such activation is irrelevant

in any context outside of the failure cause context, since the high level pattern which collects such

causes is inhibited in any other context. If this were in any context except the failure cause

context, this would be an example in which something is activated within the system which causes

no useful processing to occur.

Reading *COMMA*

53

ReadingTEMPERATURE
(TEMPERATURE* *LEFT-PAREN*HIGHORLOW*RIGHT-PAREN*)--

M-TEMPERATURE-OUT-OF-RANGE-CAUSE

Reading*LEFT-PAREN*
(TEMPERATURE*LEFT-PAREN** HIGHORLOW*RIGHT-PAREN*)=

M-TEMPERATURE-OUT-OF-RANGE-CAUSE

ReadingHIGH
(TEMPERATURE*LEFT-PAREN*HIGH* ORLOW*RIGHT-PAREN*)=

M-TEMPERATURE-OUT-OF-R_,NGE-CAUSE

ReadingOR
(TEMPERATURE*LEFT-PAREN*HIGHOR*LOW*RIGHT-PAREN*)=

M-TEMPERATURE-OUT-OF-RANGE-CAUSE

ReadingLOW
(TEMPERATURE*LEFT-PAREN*HIGHORLOW**RIGHT-PAREN*)=

M-TEMPERATURE-OUT-OF-RANGE-CAUSE

Reading*RIGHT-PAREN*
(TEMPERATURE*LEFT-PAREN*HIGHORLOW*RIGHT-PAREN**) =

M-TEMPERATURE-OUT-OF-RANGE-CAUSEreferenced
Specializing:I-M-TEMPERATURE-OUT-OF-RANGE-CAUSE.443
Specializing:I-M-HL-PATTERN.387.444

Note that parentheses are not handled in any general sense. They are merely incorporated

within specific phrases. Since the text in the manuals is so stereotypical in format, this approach

handles most cases that are encountered. A more general approach to processing parentheses

remains to be developed.

Reading *COMMA*

Reading MECHANICAL
(MECHANICAL * SHOCK) = M-MECHANICAL-SHOCK-CAUSE

Reading SHOCK
(MECHANICAL SHOCK *) = M-MECHANICAL-SHOCK-CAUSE referenced

Specializing: I-M-M ECHANICAL-SHOCK-CAUSE.446
Specializing: I-M-HL-PATTERN.387.447

Reading *COMMA*

Reading THERMAL
(THERMAL * SHOCK) = M-THERMAL-SHOCK-CAUSE

Reading SHOCK
(THERMAL SHOCK *) = M-THERMAL-SHOCK-CAUSE referenced

Specializing: I-M-THERMAL-SHOCK-CAUSE.449
Specializing: I-M-HL-PATTERN.387.450

Reading FAILURE

54

ReadingDETECTION
(FAILUREDETECTION* *SLASH*VERIFICATION*COLON*

(SEQUENCE-OF-STEPSM-DETECTION-AND-GROUP))=M-FAILURE-DETECTION
(FAILUREDETECTION* *SLASH*VERIFICATION*COLON*)= M-DETECTION-CONTEXT
(DETECTION* PROCEDURE*COLON*

(SEQUENCE-OF-STEPSM-DETECTION-AND-GROUP))--M-FAILURE-DETECTION

Reading*SLASH*
(FAILUREDETECTION*SLASH**VERIFICATION*COLON*)= M-DETECTION-CONTEXT
(FAILUREDETECTION*SLASH**VERIFICATION*COLON*

(SEQUENCE-OF-STEPSM-DETECTION-AND-GROUP))-- M-FAILURE-DETECTION

ReadingVERIFICATION
(FAILUREDETECTION*SLASH*VERIFICATION* *COLON*

(SEQUENCE-OF-STEPSM-DETECTION-AND-GROUP))= M-FAILURE-DETECTION
(FAILUREDETECTION*SLASH*VERIFICATION* *COLON*)= M-DETECTION-CONTEXT

Reading*COLON*
(FAILUREDETECTION*SLASH*VERIFICATION*COLON**)=

M-DETECTION-CONTEXTreferenced
Specializing:I-M-DETECTION-CONTEXT.454
Specializing:I-M-CONTEXT.456

(FAILUREDETECTION*SLASH*VERIFICATION*COLON**
(SEQUENCE-OF-STEPSM-DETECTION-AND-GROUP))--M-FAILURE-DETECTION

A new context is created for detection procedures. At this point, the failure causes have

been added to the case representation.

Reading INDICATION
(INDICATION * OF A (FAILED-COMPONENT M-ORU) FAILURE IS FIRST

DETECTED BY THE (DETECTION-COMPONENT M-ORU) *PERIOD*) =
M-NEXT-NODE-DETECTION

Reading OF
(INDICATION OF * A (FAILED-COMPONENT M-ORU) FAILURE IS FIRST

DETECTED BY THE (DETECTION-COMPONENT M-ORU) *PERIOD*)
DETECTION

= M-NEXT-NODE-

Reading A
(*LEFT-PAREN* A * *RIGHT-PAREN*) = M-ENUMERATION
(INDICATION OF A * (FAILED-COMPONENT M-ORU) FAILURE IS FIRST

DETECTED BY THE (DETECTION-COMPONENT M-ORU) *PERIOD*) =
M-NEXT-NODE-DETECTION

Reading RC
(RC *) = M-RC referenced

Specializing: I-M-RC.460
(INDICATION OF A (FAILED-COMPONENT M-ORU) * FAILURE IS FIRST

DETECTED BY THE (DETECTION-COMPONENT M-ORU) *PERIOD*) =
M-NEXT-NODE-DETECTION

55

The ring concentrator fulfills the requirement of finding an ORU at this point in the phrase,

and so it is advanced. If and when M-NEXT-NODE-DETECTION is recognized, it will be

instantiated with the slot and filler (FAILED-COMPONENT I-M-RC.460).

Reading FAILURE
(INDICATION OF A (FAILED-COMPONENT I-M-RC.460) FAILURE * IS FIRST

DETECTED BY THE (DETECTION-COMPONENT M-ORU) *PERIOD*) =
M-NEXT-NODE-DETECTION

Reading IS
(INDICATION OF A (FAILED-COMPONENT I-M-RC.460) FAILURE IS * FIRST

DETECTED BY THE (DETECTION-COMPONENT M-ORU) *PERIOD*)
M-NEXT-NODE-DETECTION

Reading FIRST
(INDICATION OF A (FAILED-COMPONENT I-M-RC.460) FAILURE IS FIRST *

DETECTED BY THE (DETECTION-COMPONENT M-ORU) *PERIOD*) =
M-NEXT-NODE-DETECTION

Reading DETECTED
(INDICATION OF A (FAILED-COMPONENT I-M-RC.460) FAILURE IS FIRST

DETECTED * BY THE (DETECTION-COMPONENT M-ORU) *PERIOD*) --
M-NEXT-NODE-DETECTION

Reading BY
(INDICATION OF A (FAILED-COMPONENT I-M-RC.460) FAILURE IS FIRST

DETECTED BY * THE (DETECTION-COMPONENT M-ORU) *PERIOD*) =
M-N EXT-NODE-D ETECTION

Reading THE
(INDICATION OF A (FAILED-COMPONENT I-M-RC.460) FAILURE IS FIRST

DETECTED BY THE * (DETECTION-COMPONENT M-ORU) *PERIOD*) --
M-NEXT-NODE-DETECTION

Reading *QUOTE*

Reading NEXT
(*QUOTE* NEXT * *QUOTE* ACTIVE NODE ON THE NETWORK) - M-NEXT-RC
(NEXT * ACTIVE RING CONCENTRATOR IN THE NETWORK) = M-NEXT-RC

Just as with parentheses, quotes are not yet handled in a systematic, general manner.

Reading *QUOTE*
(*QUOTE* NEXT *QUOTE* * ACTIVE NODE ON THE NETWORK) -- M-NEXT-RC

Reading ACTIVE
(*QUOTE* NEXT *QUOTE* ACTIVE * NODE ON THE NETWORK) = M-NEXT-RC

Reading NODE
(*QUOTE* NEXT *QUOTE* ACTIVE NODE * ON THE NETWORK) = M-NEXT-RC

Reading ON
(*QUOTE* NEXT *QUOTE* ACTIVE NODE ON * THE NETWORK) = M-NEXT-RC

56

ReadingTHE
(*QUOTE*NEXT*QUOTE*ACTIVENODEONTHE* NETWORK)--M-NEXT-RC

ReadingNETWORK
(DMSNETWORK*) --M-CORE-NETWORKreferenced

Specializing:I-M-CORE-NETWORK.471
(*QUOTE*NEXT*QUOTE*ACTIVENODEONTHENETWORK*)= M-NEXT-RCreferenced

Specializing:I-M-NEXT-RC.472
(INDICATIONOFA (FAILED-COMPONENTI-M-RC.460)FAILUREISFIRST

DETECTEDBYTHE(DETECTION-COMPONENTM-ORU)* *PERIOD*)=
M-NEXT-NODE-DETECTION

Reading*PERIOD*
(INDICATIONOFA (FAILED-COMPONENTI-M-RC.460)FAILUREISFIRST

DETECTEDBYTHE(DETECTION-COMPONENTI-M-NEXT-RC.472)
*PERIOD**)= M-NEXT-NODE-DETECTIONreferenced

Specializing:I-M-NEXT-NODE-DETECTION.474
((PROCEDUREM-FAILURE-DETECTION)* (EVENTM-EVENT-STEP))=

M-DISAMBIGUATE-DETECTION-EVENT
Specializing:I-M-HL-PATTERN.409.476
Specializing:I-M-HL-PATTERN.387.477
Specializing:I-M-HL-PATTERN.416.478
Removing:I-M-IP.407.457
Removing:I-M-IP.328.467
Removing:I-M-IP.395.458
Removing:I-M-IP.380.453
Removing:I-M-IP.371.428

Here a piece of the detection procedure from the text is recognized by activating a

detection procedure called M-NEXT-NODE-DETECTION detailing the failed and detection

components. Over the course of parsing the detection section, several such detection procedures

may be instantiated as different parts of the procedure are recognized. All of these procedural

fragments will ultimately be unified into one detection procedure when the context changes. The

fn'st sentence is in effect acting as a pointer to the type of procedure that is being described; the

class of M-NEXT-NODE-DETECTION organizes procedures which involve one node noticing

that another node has failed to communicate with it as expected, indicating a possible failure of

that node. The first high level pattern I-M-HL-PATTERN.409.476 is the unification pattern

which collects together instances of detection procedures for unification at a later time. The

second pattern I-M-HL-PATTERN.387.477 is the one which gathers detection procedures

together for inclusion in the case description. The last high level pattern is one which deals with

building procedures from individual events in a procedure. The latter one is not relevant to

continued processing. Notice that several index patterns are purged from the system at this time.

Since the "*period*" was processed, the system assumes that the end of a sentence was

encountered, and purges any useless patterns that were designed (perhaps by default) to be killed

at sentence boundaries.

57

Reading SYSTEM
(SYSTEM *) = M-SYSTEMS referenced

Specializing: I-M-SYSTEMS.480
((EFFECTED-COMPONENT M-MISSION-COMPONENT) * *COLON*

(SEQUENCE-OF-STEPS M-PROCEDURE)) = M-FAILURE-EFFECT
(SYSTEM * MANAGEMENT) -- M-SM

Reading MANAGEMENT
(SYSTEM MANAGEMENT *) -- M-SM referenced

Recognizing: M-SM
Creating: I-M-SM.483
Removing: I-M-SM.483
Specializing: I-M-SYSTEM-SM

Here is an example where an activated MOP specialized into a MOP that is already

resident in memory. In this case, I-M-SYSTEM-SM happened to be predefined within the

system. The parser makes use of pre-existing memory structures whenever possible.

Reading WILL

Reading REACH

Reading A
(*LEFT-PAREN* A * *RIGHT-PAREN*) ,, M-ENUMERATION

Reading TIME-OUT
((RECIPIENT I-M-SYSTEM-SM) WILL REACH A TIME-OUT * LIMIT FOR RECEIPT

OF THE (MESSAGE M-MESSAGE) *PERIOD*) ,- M-TIME-OUT-EVENT

Reading LIMIT
((RECIPIENT I-M-SYSTEM-SM) WILL REACH A TIME-OUT LIMIT * FOR RECEIPT

OF THE (MESSAGE M-MESSAGE) *PERIOD*) ,, M-TIME-OUT-EVENT

Reading FOR
((RECIPIENT I-M-SYSTEM-SM) WILL REACH A TIME-OUT LIMIT FOR * RECEIPT

OF THE (MESSAGE M-MESSAGE) *PERIOD*) ,, M-TIME-OUT-EVENT

Reading RECEIPT
((RECIPIENT I-M-SYSTEM-SM) WILL REACH A TIME-OUT LIMIT FOR RECEIPT *

OF THE (MESSAGE M-MESSAGE) *PERIOD*) ,, M-TIME-OUT-EVENT

Reading OF
((RECIPIENT I-M-SYSTEM-SM) WILL REACH A TIME-OUT LIMIT FOR RECEIPT

OF * THE (MESSAGE M-MESSAGE) *PERIOD*) = M-TIME-OUT-EVENT

Reading THE
((RECIPIENT I-M-SYSTEM-SM) WILL REACH A TIME-OUT LIMIT FOR RECEIPT

OF THE * (MESSAGE M-MESSAGE) *PERIOD*) ,, M-TIME-OUT-EVENT

Reading NETWORK
(DMS NETWORK *) -- M-CORE-NETWORK referenced

Specializing: I-M-CORE-NETWORK.471

58

Although a pattern causes M-CORE-NETWORK to be recognized in the text (the "DMS"

part of the phrase is optional), no useful processing occurs, since there were no expectations for

that MOP.

Reading TOKEN
(NETWORK TOKEN *) = M-TOKEN referenced

Specializing: I-M-TOKEN.491
((RECIPIENT I-M-SYSTEM-SM) WILL REACH A TIME-OUT LIMIT FOR RECEIPT

OF THE (MESSAGE M-MESSAGE) * *PERIOD*) - M-TIME-OUT-EVENT

Reading *PERIOD*
((RECIPIENT I-M-SYSTEM-SM) WILL REACH A TIME-OUT LIMIT FOR RECEIPT

OF THE (MESSAGE I-M-TOKEN.491) *PERIOD* *) = M-TIME-OUT-EVENT
referenced

Specializing: I-M-TIM E-OUT-EVENT.492
Specializing: I-M-HL-PATTERN.416.505

((PROCEDURE I-M-N EXT-NODE-DETECTION.474)
(EVENT I-M-TIME-OUT-EVENT.492) *) -
M-DISAMBIGUATE-DETECTION-EVENT referenced

Specializing: I-M-DISAMBIGUATE-DETECTION-EVENT.506
Creating: I-M-TIME-OUT-EVENT.144.507
Recognizing: I-M-TIME-OUT-EVENT.144.507

Here an event is recognized from the text. Events cause the activation of a high level

pattern that collects together those events occurring within a context. When a context switch

occurs, the pattern MOP will search for the procedure that best organizes all of the events, and

will recognize that procedure as the detection procedure being described. The MOP M-

DISAMBIGUATE-DETECTION-EVENT ties together the procedure recognizext from the first

sentence to this event, such that some of the slots for the event can be fleshed out. Detection

procedures are typically described by a pointer to the procedural class followed by an event from

the procedure. This index pattern captures that stereotypical pattern of text usage in the FMEA

manuals, acting as a processing aid for disambiguating the actual event.

Reading CORRECTIVE
(CORRECTIVE * ACTION *COLON*) _ M-CORRECTION-CONTEXT

Reading ACTION
(CORRECTIVE ACTION * *COLON*) ,, M-CORRECTION-CONTEXT

Reading *COLON*
(CORRECTIVE ACTION *COLON* *)., M-CORRECTION-CONTEXT referenced

Specializing: I-M-COR RECTION-CONTEXT.531
Specializing: I-M-CONTEXT.603
Specializing: I-M-BUILD-PROCEDURE.533
Specializing: I-M-AND-GROUP.145.534
Specializing: I-M-BUILD-PROCEDURE.557
Specializing: I-M-DETECTION-PROC.146.558
Specializing: I-M-BUILD-PROCEDURE.560
Specializing: I-M-DETECTION-AND-GROUP.147.561
Specializing: I-M-BUILD-PROCEDURE.588
Specializing: I-M-N EXT-NODE-DETECTION.589

((PROCEDURE M-FAILURE-DETECTION) * (EVENT M-EVENT-STEP)) =

59

M-DISAMBIGUATE-DETECTION-EVENT

Specializing: I-M-UNIFY-DETECTION-MOPS.595
Specializing: I-M-N EXT-NODE-DETECTION.596

((PROCEDURE M-FAILURE-DETECTION) * (EVENT M-EVENT-STEP)) =
M-DISAMBIGUATE-DETECTION-EVENT

As usual, with the recognition of a new context, the high level processing MOPs of the

prior context are resolved and terminated. In this case, there are several high level patterns that

were operating in the old context. The fu'st was a pattern that collected together any referenced

events (there was only one in this particular detection description). This pattern activates the M-

BUILD-PROCEDURE MOP, which searches through memory for procedures which organize

those events. Procedures are typically built up recursively; in this example, the I-M-NEXT-

NODE-DETECTION.589 procedure is built up over several steps. It is important to note that

this process is one of recognition. If there is no procedure in memory to organize the given

events, a detection procedure cannot be recognized for the text. Once the events have been

handled, another high level pattern is resolved. This one collects together procedures that occur

in a context and unifies them (if they are of the same class) into a single procedure, collecting

together all of the slots which characterize that MOP. In this case, the procedure created by the

In'st sentence and the procedure built up from the event are unified together into a single detection

procedure called I-M-NEXT-NODE-DETECTION.596. After this point, the detection

procedure is added to the case description, and the parsing continues.

Reading *LEFT-PAREN*

Reading A
(*LEFT-PAREN* A * *RIGHT-PAREN*) = M-ENUMERATION

Reading *RIGHT-PAREN*
(*LEFT-PAREN* A *RIGHT-PAREN* *) = M-ENUMERATION referenced

Specializing: I-M-ENUMERATION.605
Specializing: I-M-BUILD-CONTEXT.606
Specializing: I-M-CONTEXT.608

An enumerated list is processed by the parser by creating new subcontexts each time an

enumeration tag is specified. The parser currently recognizes the tags of (a), (b) as an

enumerated sequence. The strategy to handle this is simple: a context switch is made to wrap up

any of the higher level patterns for the prior context. Then that context is reasserted. Thus if an
enumerated list with two enumerations occurs in the correction procedures section, the correction

context will be asserted twice. This has the effect of wrapping up any processing that needs to be

resolved, while still maintaining a given context.

Reading SHORT
(SHORT * TERM) = M-SHORT-TERM

Reading TERM
(SHORT TERM *) = M-SHORT-TERM referenced

Specializing: I-M-SHORT-TERM.610
((FRAMEWORK M-FRAMEWORK) * *COLON*) = M-FAILURE-CORRECTION

Each correction procedure has a framework specifier of either short-term or long-term.

60

Reading *COLON*
((FRAMEWORK I-M-SHORT-TERM.610) *COLON* *) ---M-FAILURE-CORRECTION referenced

Specializing: I-M-FAILURE-CORR ECTION.612
Specializing: I-M-HL-PATTERN.404.613
Specializing: I-M-HL-PATTERN.387.614
Specializing: I-M-HL-PATTERN.416.615

A failure correction MOP is instantiated here with the framework recorded as a slot filler.

Just as with the detection procedure, multiple correction procedures may be activated, each of

which records some information about the correction procedure being described in the text.

These will be unified at the next context switch into the final correction procedure. The high level

patterns are those that are concerned with building up procedures (which, recall, may be

composed of events and other procedures), with unification, and with building the case.

Reading NETWORK
(DMS NETWORK *) -- M-CORE-NETWORK referenced

Specializing: I-M-CORE-NETWORK.471

Reading RECONFIGURATION
((CONFIGURATION I-M-CORE-NETWORK.471) RECONFIGURATION * IS EFFECTED

AUTOMATICALLY *PERIOD*) = M-AUTO-RECONFIG

Reading IS
((CONFIGURATION I-M-CORE-NETWORK.471) RECONFIGURATION IS * EFFECTED

AUTOMATICALLY *PERIOD*) -- M-AUTO-RECONFIG

Reading EFFECTED
((CONFIGURATION I-M-CORE-NETWORK.471) RECONFIGURATION IS EFFECTED *

AUTOMATICALLY *PERIOD*) = M-AUTO-RECONFIG

Reading AUTOMATICALLY
((CONFIGURATION I-M-CORE-NETWORK.471) RECONFIGURATION IS EFFECTED

AUTOMATICALLY * *PERIOD*) -- M-AUTO-RECONFIG

Reading *PERIOD*
((CONFIGURATION I-M-CORE-NETWORK.471) RECONFIGURATION IS EFFECTED

AUTOMATICALLY *PERIOD* *) _-M-AUTO-RECONFIG referenced

Specializing: I-M-AUTO-RECONFIG.648
Inferring--> M-RECONFIGURATION
Specializing: I-M-RECONFIGU RATION.649
Specializing: I-M-HL-PATTERN.404.650
Specializing: I-M-HL-PATTERN.387.651

The MOP M-AUTO-RECONFIG characterizes the process of a network reconfiguring

itself under software control. The major part of this act is described by the M-

RECONFIGURATION class of correction procedures, which organizes those procedures that

reconfigure the network in some manner;, the functionality of the M-AUTO-RECONFIG MOP

therefore infers the M-RECONFIGURATION procedure. Since this is a type of correction

procedure, it will eventually be unified along with the other correction procedure fragments.

Reading THE

61

ReadingDMS

ReadingNETWORK
(DMSNETWORK*)= M-CORE-NETWORKreferenced

Specializing:I-M-CORE-NETWORK.471

ReadingREMAINS
(THE(OBJECTI-M-CORE-NETWORK.471)REMAINS* INOPERATION)= M-OPERATIONAL

ReadingIN
(THE(OBJECTI-M-CORE-NETWORK.471)REMAINSIN° OPERATION)--M-OPERATIONAL

ReadingOPERATION
(THE(OBJECTI-M-CORE-NETWORK.471)REMAINSINOPERATION*) =

M-OPERATIONALreferenced
Specializing:I-M-OPERATIONAL.670

This is the first example of a state that has been explicitly mentioned in the text. Other

states have already been implicitly instantiated, however, as preconditions and results to the

events and procedures that have been recognized previously in the text.

Reading IN

Reading A
(*LEFT-PAREN* A * *RIGHT-PAREN*) = M-ENUMERATION

Reading RECONFIGURED
((RESULT I-M-OPERATIONAL.670) IN A RECONFIGURED * STATE WITH THE

FAILED (FAILED-COMPONENT M-ORU) BYPASSED) _ M-BYPASS-NODE

Reading STATE
((RESULT I-M-OPERATIONAL.670) IN A RECONFIGURED STATE * WITH THE

FAILED (FAILED-COMPONENT M-ORU) BYPASSED) = M-BYPASS-NODE

Reading WITH
((RESULT I-M-OPERATIONAL.670) IN A RECONFIGURED STATE WITH * THE

FAILED (FAILED-COMPONENT M-ORU) BYPASSED) -- M-BYPASS-NODE

Reading THE
((RESULT I-M-OPERATIONAL.670) IN A RECONFIGURED STATE WITH THE *

FAILED (FAILED-COMPONENT M-ORU) BYPASSED) -- M-BYPASS-NODE

Reading FAILED
((RESULT I-M-OPERATIONAL.670) IN A RECONFIGURED STATE WITH THE

FAILED * (FAILED-COMPONENT M-ORU) BYPASSED) ,, M-BYPASS-NODE

Reading RC
(RC *) = M-RC referenced

Specializing: I-M-RC.460
((RESULT I-M-OPERATIONAL.670) IN A RECONFIGURED STATE WITH THE

FAILED (FAILED-COMPONENT M-ORU) * BYPASSED) = M-BYPASS-NODE

62

ReadingBYPASSED
((RESULTI-M-OPERATIONAL.670)INA RECONFIGUREDSTATEWITHTHE

FAILED(FAILED-COMPONENTI-M-RC.460)BYPASSED*)=
M-BYPASS-NODEreferenced

Specializing:I-M-BYPASS-NODE.681
Specializing:I-M-HL-PATTERN.404.682
Specializing:I-M-HL-PATTERN.387.683
Specializing:I-M-HL-PA'FI'ERN.416.684

Here a more specificinstance of the M-RECONFIGURATION class has been activated.

The high level patterns are the usual ones activated with a procedure.

Reading *PERIOD*
Removing: I-M-IP.395.672

Reading *LEFT-PAREN*

Reading B
(*LEFT-PAREN* B * *RIGHT-PAREN*) = M-ENUMERATION

Reading *RIGHT-PAREN*
(*LEFT-PAREN* B *RIGHT-PAREN* *) = M-ENUMERATION referenced

Specializing: I-M-ENUMERATION.605
Specializing: I-M-BUILD-CONTEXT.606
Specializing: I-M-CONTEXT.697
Removing: I-M-HL-PATTERN.416.684
Removing: I-M-HL-PATTERN.416.652
Removing: I-M-HL-PATTERN.416.615
Specializing: I-M-BUILD-PROCEDURE.689
Removing: I-M-HL-PATTERN.404.682
Removing: I-M-HL-PATTERN.404.650
Removing: I-M-HL-PATTERN.404.613
Specializing: I-M-UNIFY-CORRECTION-MOPS.690
Specializing: I-M-BYPASS-NODE.691
Specializing: I-M-UNIFY-COR RECTION-MOPS.693
Specializing: I-M-HL-PATTERN.387.694
Specializing: I-M-BUILD-PROCEDURE.696

With the enumeration tag, we have a context switch again. The M-BUILD-

PROCEDURE MOP attempts to find a procedure in memory which organizes any of the

correction procedures that have been activated, since procedures may be composed of

subprocedures. This task fails in this instance, since there are no such procedures involving these

correction MOPs. The unification then occurs, creating the final instance of I-M-BYPASS-

NODE.691. At this point, the correction procedure is added to the case description.

Reading LONG
(LONG * TERM) = M-LONG-TERM

Reading TERM
(LONG TERM *) = M-LONG-TERM referenced

Specializing: I-M-LONG-TERM.699
((FRAMEWORK M-FRAMEWORK) * *COLON*) -- M-FAILURE-CORRECTION

63

Reading*COLON*
((FRAMEWORKI-M-LONG-TERM.699)*COLON**)=M-FAILURE-CORRECTIONreferenced

Specializing:I-M-FAILURE-CORRECTION.701
Specializing:I-M-HL-PATTERN.404.702
Specializing:I-M-HL-PATTERN.387.703
Specializing:I-M-HL-PATTERN.416.704

ReadingTHE

ReadingCREWMEN
(THECREWMEN*)--M-CREWreferenced

Specializing:I-M-CREW.737
((EFFECTED-COMPONENTM-MISSION-COMPONENT)* *COLON*

(SEQUENCE-OF-STEPSM-PROCEDURE))--M-FAILURE-EFFECT

ReadingCHECK
((ACTORI-M-CREW.737)CHECK*FOR(OBJECTM-SYSTEM))= M-VERIFY-EVENT

ReadingFOR
((ACTORI-M-CREW.737)CHECKFOR* (OBJECTM-SYSTEM))= M-VERIFY-EVENT

Reading *QUOTE*

Reading APPLIED
(*QUOTE* APPLIED * POWER *QUOTE*) = M-POWER-SYSTEM

Reading POWER
(*QUOTE* APPLIED POWER * *QUOTE*) = M-POWER-SYSTEM

Reading *QUOTE*
(*QUOTE* APPLIED POWER *QUOTE* *) = M-POWER-SYSTEM referenced

Specializing: I-M-POWER-SYSTEM.308
((ACTOR I-M-CREW.737) CHECK FOR (OBJECT I-M-POWER-SYSTEM.308) *) ,-

M-VERIFY-EVENT referenced
Specializing: I-M-VERIFY-EVENT.742
Specializing: I-M-HL-PATTERN.416.745

Note that although the event describing the verification of the power system has been

activated, it is not clear what the power system is a component of from this sentence. A context

for this event will eventually be provided when the correction procedure which organizes it is

recognized. At that time, the device under consideration (a ring concentrator) will be referenced

along with this event, thereby providing the explicit connection between the power system and the

ring concentrator.

Reading AND

Reading THE

Reading CREWMEN
(THE CREWMEN *) -- M-CREW referenced

Specializing: I-M-CREW.737
((EFFECTED-COMPONENT M-MISSION-COMPONENT) * *COLON*

(SEQUENCE-OF-STEPS M-PROCEDURE)) ,, M-FAILURE-EFFECT

64

ReadingCHECK
((ACTORI-M-CREW.737)CHECK* FOR(OBJECTM-SYSTEM))= M-VERIFY-EVENT

ReadingFOR
((ACTORI-M-CREW.737)CHECKFOR* (OBJECTM-SYSTEM))= M-VERIFY-EVENT

Reading*QUOTE*

ReadingCONNECTOR
(*QUOTE*CONNECTOR*TIGHTNESS*QUOTE*)= M-CONNECTORS

Reading TIGHTNESS
(*QUOTE* CONNECTOR TIGHTNESS * *QUOTE*) = M-CONNECTORS

Reading *QUOTE*
(*QUOTE* CONNECTOR TIGHTNESS *QUOTE* *) = M-CONNECTORS referenced

Specializing: I-M-CONNECTORS.310
((ACTOR I-M-CREW.737)CHECK FOR (OBJECT I-M-CONNECTORS.310) *) =

M-VERIFY-EVENT referenced

Specializing: I-M-VERIFY-EVENT.754
Specializing: I-M-HL-PATTERN.416.757

Here is a second event from the current correction procedure. This illustrates how

multiple events from a procedure may be specified within a context.

Reading *PERIOD*

Reading IF

Reading THE

Reading RC
(RC *) = M-RC referenced

Specializing: I-M-RC.460

Reading CANNOT

Reading THEN

Reading BE

Reading PLACED

Reading IN

Reading OPERATION

Reading *COMMA*

Reading THE

65

ReadingRC
(RC*)= M-RCreferenced

Specializing: I-M-RC.460

Reading IS

Reading REMOVED

Reading AND

Reading REPLACED
(THE (FAILED-COMPONENT I-M-RC.460) IS REMOVED AND REPLACED * WITH

'AN ORU LOGISTICS SPARE *PERIOD*) = M-REPLACE-WITH-SPARE

Reading WITH
(THE (FAILED-COMPONENT I-M-RC.460) IS REMOVED AND REPLACED WITH *

AN ORU LOGISTICS SPARE *PERIOD*) = M-REPLACE-WITH-SPARE

Reading AN
(THE (FAILED-COMPONENT I-M-RC.460) IS REMOVED AND REPLACED WITH AN

* ORU LOGISTICS SPARE *PERIOD*) = M-REPLACE-WITH-SPARE

Reading ORU
(THE (FAILED-COMPONENT I-M-RC.460) IS REMOVED AND REPLACED WITH AN

ORU * LOGISTICS SPARE *PERIOD*) = M-REPLACE-WITH-SPARE

Reading LOGISTICS
(THE (FAILED-COMPONENT I-M-RC.460) IS REMOVED AND REPLACED WITH AN

ORU LOGISTICS * SPARE *PERIOD*) = M-REPLACE-WITH-SPARE

Reading SPARE
(THE (FAILED-COMPONENT I-M-RC.460) IS REMOVED AND REPLACED WITH AN

ORU LOGISTICS SPARE * *PERIOD*) = M-REPLACE-WITH-SPARE

Reading *PERIOD*
(THE (FAILED-COMPONENT I-M-RC.460) IS REMOVED AND REPLACED WITH AN

ORU LOGISTICS SPARE *PERIOD* *) = M-REPLACE-WITH-SPARE referenced
Specializing: I-M-REPLACE-WITH-SPARE.778
Specializing: I-M-HL-PATTERN.404.779
Specializing: I-M-HL-PATTERN.387.780
Specializing: I-M-HL-PATTERN.416.781

Note that this sentence begins with an "if" conditional clause. This is ignored by the

current system, since conditionals are not represented within the knowledge representation. This

decision was motivated by the desire to simplify some of the issues involved in parsing text; the

addition of conditionals would have significantly complicated processing.

Reading FAILURE

Reading EFFECT
(FAILURE EFFECT * ON *COLON*) = M-EFFECT-CONTEXT
(FAILURE EFFECT * ON THE (EFFECTED-COMPONENT M-MISSION-COMPONENT)

• COLON* (SEQUENCE-OF-STEPS M-GROUP)) -- M-FAILURE-EFFECT

66

Reading ON
(FAILURE EFFECT ON * THE (EFFECTED-COMPONENT M-MISSION-COMPONENT)

•COLON* (SEQUENCE-OF-STEPS M-GROUP)) = M-FAILURE-EFFECT
(FAILURE EFFECT ON * *COLON*) = M-EFFECT-CONTEXT

Reading *COLON*
(FAILURE EFFECT ON *COLON* *) = M-EFFECT-CONTEXT referenced

Specializing: I-M-EFFECT-CONTEXT.784
Specializing:
Specializing:
Specializing:
Specializing:
Specializing:
Specializing:
Specializing:
Specializing:
Specializing:
Specializing:
Specializing:
Specializing:
Specializing:
Specializing:
Specializing:
Specializing:

I-M-BUILD-PROCEDURE.786
I-M-AND-GROUP.313.787
I-M-BUILD-PROCEDURE.826
I-M-AN D-G ROU P.314.827
I-M-BUILD-PROCEDURE.885
I-M-CORRECTION-PROC.315.886
I-M-BUILD-PROCEDURE.888
I-M-CORRECTION-AND-GROUP.316.889
I-M-BUlLD-PROC EDU RE.931
I-M-NON-OPERATIONAL-REPLACEMENT.932
I-M-HL-PA'I-IERN.404.933
I-M-HL-PA'I-FERN.387.934
I-M-BUILD-PROCEDURE.936
I-M-UNIFY-CORRECTION-MOPS.937
I-M-FAILU RE-CORRECTION.938
I-M-CONTEXT.956

Once again, the build procedure and unification processes kick in and create the correction

procedure I-M-NON-OPERATIONAL-REPLACEMENT.932 described in the text. In this

instance, the parser has to recognize a correction procedure that organizes three events mentioned
in the text. The M-BUILD-PROCEDURE is general enough to find a candidate procedure that

best characterizes any number of events. At this point in the parsing of the text, both of the

correction procedures have been added to the case description.

Reading *LEFT-PAREN*

Reading A
(*LEFT-PAREN* A * *RIGHT-PAREN*) -- M-ENUMERATION

Reading *RIGHT-PAREN*
(*LEFT-PAREN* A *RIGHT-PAREN* *) ---M-ENUMERATION referenced

Specializing: I-M-ENUMERATION.605
Specializing: I-M-BUILD-CONTEXT.959
Specializing: I-M-CONTEXT.961

Reading CREW
(CREW *) = M-CREW referenced

Specializing: I-M-CREW.737
((EFFECTED-COMPONENT M-MISSION-COMPONENT) * *COLON*

(SEQUENCE-OF-STEPS M-PROCEDURE)) -- M-FAILURE-EFFECT

Reading *SLASH*

67

ReadingSSPE
(CREW*SLASH*SSPE*)= M-CREWreferenced

Specializing:I-M-CREW.737
((EFFECTED-COMPONENTM-MISSION-COMPONENT)* *COLON*

(SEQUENCE-OF-STEPSM-PROCEDURE))= M-FAILURE-EFFECT

Reading*COLON*
((EFFECTED-COMPONENTI-M-CREW.737)*COLON**

(SEQUENCE-OF-STEPSM-PROCEDURE))= M-FAILURE-EFFECT
((EFFECTED-COMPONENTI-M-CREW.737)*COLON**

(SEQUENCE-OF-STEPSM-PROCEDURE))= M-FAILURE-EFFECT

ReadingNONE
(NONE**PERIOD*)= M-DISAMBIGUATE-NONE

Reading*PERIOD*
(NONE*PERIOD**)= M-DISAMBIGUATE-NONEreferenced

Specializing:I-M-DISAMBIGUATE-NONE.969
Recognizing:I-M-NULL-PROCEDURE

((EFFECTED-COMPONENTI-M-CREW.737)*COLON*
(SEQUENCE-OF-STEPSI-M-NULL-PROCEDURE)*)=M-FAILURE-EFFECT
referenced

Specializing:I-M-FAILURE-EFFECT.970
((SEQUENCE-OF-STEPSM-FAILURE-EFFECT)*

(JUSTIFICATIONM-FAILURE-CORRECTION))= M-SEARCH-FOR-EFFECT-REFERENT
Specializing:I-M-HL-PATTERN.387.972
Specializing:I-M-HL-PATTERN.416.973

The word "none" when used in the context of a failure effect usually indicates that there is

no effect. That same word in another context might mean something entirely different. The MOP

M-DISAMBIGUATE-NONE checks for the current context to disambiguate the meaning of that

word. There are certainly other (possibly more general) methods of disambiguating a word within

a given context; this one was chosen for ease of implementation. "None" in this context therefore
causes the activation of I-M-NULL-PROCEDURE, the concept that is used to represent the lack

of a procedure.

Reading THE

Reading CONDITIONS
(THE CONDITIONS * ASSOCIATED WITH THE REPLACEMENT OF A RC WITHIN

THE NETWORK CONFIGURATION ARE SUCH THAT THE NETWORK IS
ALREADY IN A RECONFIGURED STATE SUPPLYING FULL SERVICES

•PERIOD*) = M-BYPASS-NODE

This pattern demonstrates that index patterns can be quite specific and therefore not of

general utility if not defined properly. This pattern is effective only for a sentence that follows this

precise format. A better definition of the pattern would be to generalize it. Minimally, each of

the entities mentioned could be replaced by an ORU concept filler, which would allow the phrase

to be used in conjunction with any of the ORU devices. Since this is such a long phrase, it will be

omitted from the trace until it is actually recognized.

Reading ASSOCIATED

68

Reading WITH

Reading THE

Reading REPLACEMENT

Reading OF

Reading A
(*LEFT-PAREN* A * *RIGHT-PAREN*) = M-ENUMERATION

Reading RC
(RC *) = M-RC referenced

Specializing: I-M-RC.460

Reading WITHIN

Reading THE

Reading NETWORK
(DMS NETWORK *) ,- M-CORE-NETWORK referenced

Specializing: I-M-CORE-NETWORK.471

Reading CONFIGURATION

Reading ARE

Reading SUCH

Reading THAT

Reading THE

Reading NETWORK
(DMS NETWORK *) _ M-CORE-NETWORK referenced

Specializing: I-M-CORE-NETWORK.471

Reading IS

Reading ALREADY

Reading IN

Reading A
(*LEFT-PAREN* A * *RIGHT-PAREN*) = M-ENUMERATION

Reading RECONFIGURED
((RESULT I-M-OPERATIONAL.670) IN A RECONFIGURED * STATE WITH THE

FAILED (FAILED-COMPONENT M-ORU) BYPASSED) = M-BYPASS-NODE

Reading STATE
((RESULT I-M-OPERATIONAL.670) IN A RECONFIGURED STATE * WITH THE

FAILED (FAILED-COMPONENT M-ORU) BYPASSED) -- M-BYPASS-NODE

69

Reading SUPPLYING

Reading FULL

Reading SERVICES

Reading *PERIOD*
(THE CONDITIONS ASSOCIATED WITH THE REPLACEMENT OF A RC WITHIN THE

NETWORK CONFIGURATION ARE SUCH THAT THE NETWORK IS ALREADY IN
A RECONFIGURED STATE SUPPLYING FULL SERVICES *PERIOD* *) =
M-BYPASS-NODE referenced

Specializing: I-M-BYPASS-NODE.996
Specializing: I-M-HL-PATTERN.404.997

((SEQUENCE-OF-STEPS I-M-FAILURE-EFFECT.970)
(JUSTIFICATION I-M-BYPASS-NODE.996) *) =
M-SEARCH-FOR-EFFECT-REFERENT referenced

Specializing: I-M-SEARCH-FOR-EFFECT-REFERENT.999
Specializing: I-M-HL-PATTERN.416.1000

With failureeffects,the FMEA manuals generallyfollowone of two patterns.They either

detaila procedure that representsthe effecton a system component (thismay be the null

procedure),or they specifya procedure and givea justificationfor those effectswhich references

one of thecorrectionprocedures in thesame case. The latterinstanceoccurs with thisfirstfailure

effect.The justificationdetailedistheM-BYPASS-NODE procedure from the failurecorrections

section (the argument is essentiallythat there is no effectbecause the failedcomponent is

automaticallybypassed). When such ajustificationisgiven,the parsermust searchback over the

failurecorrectionprocedures to dctcrminc which one isbeing used as the justification.The M-

BYPASS-NODE procedure instantiatcdby the justificationis used to find the matching M-

BYPASS-PROCEDURE from the correctionssection;in thiscase, I-M-BYPASS-NODE.691 is

found (althoughthisisnot reflectedinthe trace).This procedure isthen used as the fillerfor the

failure effect slot.

Reading *LEFT-PAREN*

Reading B
(*LEFT-PAREN* B * *RIGHT-PAREN*) = M-ENUMERATION

Reading *RIGHT-PAREN*
(*LEFT-PAREN* B *RIGHT-PAREN* *) = M-ENUMERATION referenced

Specializing: I-M-ENUMERATION.605
Specializing: I-M-BUILD-CONTEXT.959
Specializing: I-M-CONTEXT.1007

With the new failure effect context being established, the first failure effect is added to the

case description.

Reading MISSION
(MISSION * SUPPORT) = M-MISSION-SUPPORT

7O

Reading SUPPORT
(MISSION SUPPORT *) = M-MISSION-SUPPORT referenced

Specializing: I-M-MISSION-SUPPORT.1009
((EFFECTED-COMPONENT M-MISSION-COMPONENT) * *COLON*

(SEQUENCE-OF-STEPS M-PROCEDURE)) = M-FAILURE-EFFECT

Reading *COLON*
((EFFECTED-COMPONENT I-M-MISSION-SUPPORT.1009) *COLON* *

(SEQUENCE-OF-STEPS M-PROCEDURE)) = M-FAILURE-EFFECT

Reading NONE
(NONE * *PERIOD*) = M-DISAMBIGUATE-NONE

Reading *PERIOD*
(NONE *PERIOD* *) = M-DISAMBIGUATE-NONE referenced

Specializing: I-M-DISAMBIGUATE-NONE.969
Recognizing: I-M-NULL-PROCEDURE

((EFFECTED-COMPONENT I-M-MISSION-SUPPORT.1009) *COLON*
(SEQUENCE-OF-STEPS I-M-NULL-PROCEDURE) *) = M-FAILURE-EFFECT
referenced

Specializing: I-M-FAILURE-EFFECT.1013
((SEQUENCE-OF-STEPS M-FAILURE-EFFECT) *

(JUSTIFICATION M-FAILURE-CORRECTION)) = M-SEARCH-FOR-EFFECT-REFERENT
Specializing: I-M-H L-PA'I-I'ER N.387.1015
Specializing: I-M-HL-PATTERN.416.1016

Reading *LEFT-PAREN*

Reading C
(*LEFT-PAREN* C * *RIGHT-PAREN*) = M-ENUMERATION

Reading *RIGHT-PAREN*
(*LEFT-PAREN* C *RIGHT-PAREN* *) = M-ENUMERATION referenced

Specializing: I-M-ENUMERATION.605
Specializing: I-M-B UILD-CONTEXT.959
Specializing: I-M-CONTEXT.1023

The second failure effect is now added to the case description. This one has just the null

procedure as its filler.

Reading SYSTEM
(SYSTEM *) = M-SYSTEMS referenced

Specializing: I-M-SYSTEMS.480
((EFFECTED-COMPONENT M-MISSION-COMPONENT) * *COLON*

(SEQUENCE-OF-STEPS M-PROCEDURE)) = M-FAILURE-EFFECT
(SYSTEM * MANAGEMENT) = M-SM

Reading *COLON*
((EFFECTED-COMPONENT I-M-SYSTEMS.480) *COLON* *

(SEQUENCE-OF-STEPS M-PROCEDURE)) = M-FAILURE-EFFECT

Reading NONE
(NONE * *PERIOD*) = M-DISAMBIGUATE-NONE

71

Reading*PERIOD*
(NONE*PERIOD**) --M-DISAMBIGUATE-NONEreferenced

Specializing:I-M-DISAMBIGUATE-NONE.969
Recognizing:I-M-NULL-PROCEDURE

((EFFECTED-COMPONENTI-M-SYSTEMS.480)*COLON*
(SEQUENCE-OF-STEPSI-M-NULL-PROCEDURE)*) --M-FAILURE-EFFECT
referenced

Specializing:I-M-FAILURE-EFFECT.1030
((SEQUENCE-OF-STEPSM-FAILURE-EFFECT)*

(JUSTIFICATIONM-FAILURE-CORRECTION))--M-SEARCH-FOR-EFFECT-REFERENT
Specializing:I-M-HL-PATFERN.387.1032
Specializing:I-M-HL-PA'I-FERN.416.1033

Reading*LEFT-PAREN*

ReadingD
(*LEFT-PAREN*D* *RIGHT-PAREN*)= M-ENUMERATION

Reading*RIGHT-PAREN*
(*LEF'I'-PAREN*D*RIGHT-PAREN**) --M-ENUMERATIONreferenced

Specializing:I-M-ENUMERATION.605
Recognizing:M-CONTEXT
Specializing:I-M-CONTEXT.1040

The third failure effect is added to the case description at this point.

Reading INTERFACES
(INTERFACES *) = M-INTERFACES referenced

Specializing: I-M-INTERFACES.1042
((EFFECTED-COMPONENT M-MISSION-COMPONENT) * *COLON*
(SEQUENCE-OF-STEPS M-PROCEDURE)) = M-FAILURE-EFFECT

Reading *COLON*
((EFFECTED-COM PONENT I-M-INTERFACES.1042) *COLON* *

(SEQUENCE-OF-STEPS M-PROCEDURE)) -- M-FAILURE-EFFECT

Reading NONE
(NONE * *PERIOD*) = M-DISAMBIGUATE-NONE

Reading *PERIOD*
(NONE *PERIOD* *) = M-DISAMBIGUATE-NONE referenced

Specializing: I-M-DISAMBIGUATE-NONE.969
Recognizing: I-M-NULL-PROCEDURE

((EFFECTED-COMPONENT I-M-INTERFACES.1042) *COLON*
(SEQUENCE-OF-STEPS I-M-NULL-PROCEDURE) *) -- M-FAILURE-EFFECT
referenced

Specializing: I-M-FAILURE-EFFECT.1046
((SEQUENCE-OF-STEPS M-FAILURE-EFFECT) *

(JUSTIFICATION M-FAILURE-CORRECTION)) -- M-SEARCH-FOR-EFFECT-REFERENT
Specializing: I-M-HL-PATTERN.387.1048
Specializing: I-M-HL-PATTERN.416.1049

72

Reading*EOC*
Specializing:I-M-CONTEXT.1051
Specializing:I-M-CASE.1053

The *EOC* is used to mark the end of a case text. It also causes a context switch, which

wraps up the processing of the last effect. Finally, the *EOC* symbol causes the termination of

the high level pattern that builds up case descriptions. The final case structure is now instantiated,

and the parsing process is complete for the given input.

This is the final case description that is built by the parser:.

>(dph "I-M-CASE.1053)
(I-M-CASE.1053 (FAILED-COMPONENT I-M-GENERIC-RC.422)

(MODE I-M-STARTUP-NO-OUTPUT.1089
(SEQUENCE-OF-STEPS I-M-AND-GROUP.97.1085

(2 I-M-WAIT-TO-RECEIVE-EVENT.95.1071
(RESULT I-M-TIME-ELAPSED-FOR-OBJECT.25.1056

(OBJECT I-M-SYSTEM-SM))
(RESULT I-M-READY-TO-RECEIVE.22.1059

(RECIPIENT I-M-SYSTEM-SM)
(OBJECT I-M-TOKEN.491))

(ACTION I-M-WAIT-FOR-M ESSAGE.23.1064
(ACTOR I-M-SYSTEM-SM) (RECIPIENT I-M-SYSTEM-SM)
(OBJECT I-M-TOKEN.491))

(PRECOND I-M-READY-TO-RECEIVE.22.1059
(RECIPIENT I-M-SYSTEM-SM)
(OBJECT I-M-TOKEN.491))

(RECIPIENT I-M-SYSTEM-SM) (MESSAGE I-M-TOKEN.491))
(3 I-M-TIME-OUT-EVENT.96.1084
(RESULT I-M-TRANSMISSION-TIMED-OUT.41.502

(RECIPIENT I-M-SYSTEM-SM)
(OBJECT I-M-TOKEN.491))

(ACTION I-M-TIME-OUT.40.499 (ACTOR I-M-SYSTEM-SM)
(RECIPIENT I-M-SYSTEM-SM)
(OBJECT I-M-TOKEN.491))

(PRECOND I-M-READY-TO-RECEIVE.36.495
(RECIPIENT I-M-SYSTEM-SM)
(OBJECT I-M-TOKEN.491))

(RECIPIENT I-M-SYSTEM-SM) (MESSAGE I-M-TOKEN.491)))
(PRECOND I-M-READY-TO-RECEIVE.93.1088

(RECIPIENT I-M-SYSTEM-SM) (OBJECT I-M-TOKEN.491)))
(CAUSE I-M-FAULTY-COMPONENT-CAUSE.1094
(CAUSE I-M-CONTAMINATION-CAUSE.440)
(CAUSE I-M-TEMPERATU RE-OUT-OF-RANGE-CAUSE.443)
(CAUSE I-M-M ECHANICAL-SHOCK-CAUSE.446)
(CAUSE I-M-THERMAL-SHOCK-CAUSE.449)
(DETECTION I-M-NEXT-NODE-DETECTION.1150

(RESULT I-M-NON-OPERATIONAL.148.1100
(OBJECT I-M-GENERIC-RC.422))

(PRECOND I-M-POWER-ON. 141.1102 (OBJECT I-M-NEXT-RC.472))
(PRECOND I-M-NEXT-NODE.140.1105 (OBJECT1 I-M-NEXT-RC.472)

(OBJECT2 I-M-GENERIC-RC.422))
(PRECON D I-M-LOGICALLY-CON NECTED.137.1107

?3

(OBJECT1I-M-GENERIC-RC.422))
(PRECONDI-M-PHYSICALLY-CONNECTED.136.1109

(OBJECT1I-M-GENERIC-RC.422))
(FAILED-COMPONENTI-M-GENERIC-RC.422)
(DETECTION-COMPONENTI-M-NEXT-RC.472)
(SEQUENCE-OF-STEPSI-M-DETECTION-AND-GROUP.147.1147

(1I-M-DETECTION-PROC.146.1144
(PRECONDI-M-READY-TO-RECEIVE.142.563

(OBJECTI-M-TOKEN.491))
(SEQUENCE-OF-STEPSI-M-AND-GROUP.145.1142

(1I-M-WAIT-TO-RECEIVE-EVENT.143.1123
(RESULTI-M-TIME-ELAPSED-FOR-OBJECT.25.1056

(OBJECTI-M-SYSTEM-SM))
(RESULTI-M-READY-TO-RECEIVE.22.536

(OBJECTI-M-TOKEN.491))
(ACTIONI-M-WAIT-FOR-MESSAGE.23.538

(OBJECTI-M-TOKEN.491))
(PRECONDI-M-READY-TO-RECEIVE.22.536

(OBJECTI-M-TOKEN.491))
(MESSAGEI-M-TOKEN.491))
(2 I-M-TIME-OUT-EVENT.144.507
(PRECONDI-M-READY-TO-RECEIVE.36.495

(RECIPIENTI-M-SYSTEM-SM)
(OBJECTI-M-TOKEN.491))

(ACTIONI-M-TIME-OUT.40.499(ACTORI-M-SYSTEM-SM)
(RECIPIENTI-M-SYSTEM-SM)
(OBJECTI-M-TOKEN.491))

(RESULTI-M-TRANSMISSION-TIMED-OUT.41.502
(RECIPIENTI-M-SYSTEM-SM)
(OBJECTI-M-TOKEN.491))

(RECIPIENTI-M-SYSTEM-SM)(MESSAGEI-M-TOKEN.491))))))
(CORRECTIONI-M-BYPASS-NODE.1177

(SEQUENCE-OF-STEPSI-M-CORRECTION-AND-GROUP.251.1164
(1I-M-CORRECTION-PROC.250.1163
(SEQUENCE-OF-STEPSI-M-AND-GROUP.249.1162

(1I-M-LOGICAL-DISCONNECT-EVENT.248.1161
(ACTORI-M-SYSTEM-SM)(OBJECT1I-M-GENERICoRC.422)
(OBJECT2I-M-CORE-NETWORK.471)
(PRECONDI-M-LOGICALLY-CONNECTED.245.1155

(OBJECT2I-M-CORE-NETWORK.471))
(ACTIONI-M-LOGICAL-DISCONNECT.246.1158

(ACTORI-M-SYSTEM-SM)
(OBJECT2I-M-CORE-NETWORK.471))

(RESULTI-M-LOGICALLY-DISCONNECTED.247.1160
(OBJECT2I-M-CORE-NETWORK.471))))))

(PRECONDI-M-PHYSICALLY-CONNECTED.202.1167
(OBJECT1I-M-GENERIC-RC.422)
(OBJECT2I-M-CORE-NETWORK.471))

(PRECONDI-M-LOGICALLY-CONNECTED.203.1170
(OBJECT1I-M-GENERIC-RC.422)
(OBJECT2I-M-CORE-NETWORK.471))

(FRAMEWORKI-M-SHORT-TERM.610)
(CONFIGURATION I-M-CORE-NETWORK.471)
(CORRECTION-COMPONENT I-M-SYSTEM-SM)
(RESULT I-M-OPERATIONAL.302.1175 (OBJECT I-M-CORE-NETWORK.471))

?4

(FAILED-COMPONENTI-M-GENERIC-RC.422))
(CORRECTIONI-M-UNDEFINED-CORRECTION.1238

(FRAMEWORKI-M-LONG-TERM.699)
(FAILED-COMPONENTI-M-GENERIC-RC.422)
(SEQUENCE-OF-STEPSI-M-CORRECTION-AND-GROUP.316.1237

(1I-M-CORRECTION-PROC.315.1236
(SEQUENCE-OF-STEPSI-M-AND-GROUP.314.1235

(1I-M-AND-GROUP.313.1234
(2I-M-VERIFY-CONNECTORS-EVENT.311.793
(ACTIONI-M-VERIFY-CONNECTORS.84.790

(ACTORI-M-CREW.737)
(OBJECTI-M-CONNECTORS.310))

(ACTORI-M-CREW.737)(OBJECTI-M-CONNECTORS.310))
(1 I-M-VERIFY-POWER-EVENT.309.802
(ACTIONI-M-VERIFY-POWER.81.799(ACTORI-M-CREW.737)

(OBJECTI-M-POWER-SYSTEM.308))
(ACTORI-M-CREW.737)(OBJECTI-M-POWER-SYSTEM.308))

(3 I-M-REPLACE-WITH-SPARE.312.1229
(RESULTI-M-LOGICALLY-CONNECTED.300.1193

(OBJECT1I-M-CORE-NETWORK.471))
(RESULTI-M-OPERATIONAL.302.1175

(OBJECTI-M-CORE-NETWORK.471))
(PRECONDI-M-NON-OPERATIONAL.286.807

(OBJECTI-M-GENERIC-RC.422))
(SEQUENCE-OF-STEPSI-M-CORRECTION-AND-GROUP.299.1226

(1 I-M-CORRECTION-PROC.298.1225
(SEQUENCE-OF-STEPSI-M-AND-GROUP.297.1224

(4I-M-LOGICAL-CONNECT-EVENT.296.1199
(OBJECT1I-M-CORE-NETWORK.471))
(2 I-M-PHYSICAL-CONNECT-EVENT.288.1207
(RESULTI-M-PHYSICALLY-CONNECTED.73.1201

(OBJECT1I-M-CORE-NETWORK.471))
(ACTIONI-M-PHYSICAL-CONNECT.72.1203

(OBJECT1I-M-CORE-NETWORK.471))
(PRECONDI-M-PHYSICALLY-DISCONNECTED.71.1205

(OBJECT1I-M-CORE-NETWORK.471))
(OBJECT1I-M-CORE-NETWORK.471))

(1 I-M-PHYSICAL-DISCONNECT-EVENT.287.815
(RESULTI-M-PHYSICALLY-DISCONNECTED.67.809

(OBJECT1I-M-GENERIC-RC.422))
(ACTIONI-M-PHYSICAL-DISCONNECT.66.811

(OBJECT1I-M-GENERIC-RC.422))
(PRECONDI-M-PHYSICALLY-CONNECTED.65.813

(OBJECT1I-M-GENERIC-RC.422))
(OBJECT1I-M-GENERIC-RC.422))
(3 I-M-LOGICAL-DISCONNECT-EVENT.292.857
(RESULTI-M-LOGICALLY-DISCONNECTED.291.851

(OBJECT1I-M-GENERIC-RC.422))
(ACTIONI-M-LOGICAL-DISCONNECT.290.853

(OBJECT1I-M-GENERIC-RC.422))
(PRECONDI-M-LOGICALLY-CONNECTED.289.855

(OBJECT1I-M-GENERIC-RC.422))
(OBJECT1I-M-GENERIC-RC.422)))))

(RESULTI-M-LOGICALLY-DISCONNECTED.301.822
(OBJECT1I-M-GENERIC-RC.422))))))))

75

(EFFECTI-M-FAILURE-EFFECT.1267
(SEQUENCE-OF-STEPSI-M-BYPASS-NODE.1177

(SEQUENCE-OF-STEPSI-M-CORRECTION-AND-GROUP.251.1164
(1I-M-CORRECTION-PROC.250.1163
(SEQUENCE-OF-STEPSI-M-AND-GROUP.249.1162

(1I-M-LOGICAL-DISCONNECT-EVENT.248.1161
(ACTORI-M-SYSTEM-SM)
(OBJECT1I-M-GENERIC-RC.422)
(OBJECT2I-M-CORE-NETWORK.471)
(PRECONDI-M-LOGICALLY-CONNECTED.245.1155

(OBJECT2I-M-CORE-NETWORK.471))
(ACTIONI-M-LOGICAL-DISCONNECT.246.1158

(ACTORI-M-SYSTEM-SM)
(OBJECT2I-M-CORE-NETWORK.471))

(RESULTI-M-LOGICALLY-DISCONNECTED.247.1160
(OBJECT2I-M-CORE-NETWORK.471))))))

(PRECONDI-M-PHYSICALLY-CONNECTED.202.1167
(OBJECT1I-M-GENERIC-RC.422)
(OBJECT2I-M-CORE-NETWORK.471))

(PRECONDI-M-LOGICALLY-CONNECTED.203.1170
(OBJECT1I-M-GENERIC-RC.422)
(OBJECT2I-M-CORE-NETWORK.471))

(FRAMEWORKI-M-SHORT-TERM.610)
(CONFIGURATIONI-M-CORE-NETWORK.471)
(CORRECTION-COMPONENTI-M-SYSTEM-SM)
(RESULTI-M-OPERATIONAL.302.1175

(OBJECTI-M-CORE-NETWORK.471))
(FAILED-COMPONENTI-M-GENERIC-RC.422))

(EFFECTED-COMPONENTI-M-CREW.737))
(EFFECTI-M-FAILURE-EFFECT.1273

(EFFECTED-COMPONENTI-M-MISSION-SUPPORT.1009)
(SEQUENCE-OF-STEPSI-M-PROCEDURE.1272

(SEQUENCE-OF-STEPSI-M-NULL-AND-GROUP.86
(1 I-M-NULL-EVENT.85(ACTIONI-M-NULL-ACTION)))))

(EFFECTI-M-FAILURE-EFFECT.1282
(EFFECTED-COMPONENTI-M-SYSTEMS.480)
(SEQUENCE-OF-STEPSI-M-PROCEDURE.1272

(SEQUENCE-OF-STEPSI-M-NULL-AND-GROUP.86
(1I-M-NULL-EVENT.85(ACTIONI-M-NULL-ACTION)))))

(EFFECTI-M-FAILURE-EFFECT.1288
(EFFECTED-COMPONENTI-M-INTERFACES.1042)
(SEQUENCE-OF-STEPSI-M-PROCEDURE.1272

(SEQUENCE-OF-STEPSI-M-NULL-AND-GROUP.86
(1I-M-NULL-EVENT.85(ACTIONI-M-NULL-ACTION))))))

5.3 Parsing Input Questions

In FANSYS, the parser operates in two modes called case mode and question mode. The

parser behaves identically in each mode with the exception of the degree of indexing that occurs

in each. In case mode, every instance of a concept that is created in memory is fully indexed in

the generalization indexing hierarchy (in addition to each of the other hierarchies), as described in

the section on Memory Creation and Retrieval. Thus, every new instance of a concept will be

generalized with other similar instances. This reflects the fact that during case parsing, all

76

information is useful and should be used to learn about the domain. Since it is the task of the

parser to learn from the case texts that it reads, it is desirable that full indexing occur.

In question mode, instances are not generalized. This reflects the different goal that

FANSYS has in parsing a question. In case mode, the goal is to learn new concepts and organize

them within memory. In question mode, the goal is to formulate a search query and return the

results of that query. Questions that are parsed instantiate concepts in memory just as in case

mode, but these concepts need not be generalized over, since they are not part of the actual case

text. The degree of indexing is the primary difference between the two modes.

It is possible to specify that certain index patterns be active in only either question mode

or in case mode. The motivation behind this involves the processing that occurs when a question

is parsed. If parsing a manual and rhetorical question is encountered, the system should not

activate the search and retrieval patterns that handle that question, since it is not an appropriate

context for search and retrieval. In question mode, on the other hand, the system should activate

search and retrieval functions if a question is parsed. This is facilitated by making the question

patterns with functional processing knowledge operable in only question mode, rather than case

mode. In general however, an index pattern will be active in both modes; the phrase "ring

concentrator" should certainly activate the same concept in either mode.

Although this dichotomy between the two modes exists, it should be emphasized that

processing is identical in all other ways. The flow of control is the same, as are those hierarchies

other than the generalization indexing hierarchy, since the same memory structures are parsed into

in both cases.

5.3.1 Question Patterns

In parsing questions, there are two primary indexed patterns used. These are shown in

figure 5.5, along with sample questions. The parts of the patterns in square brackets are optional.

Questions are highly constrained in the format in which they may be posed, primarily for ease of

definition, and to provide a well specified means of generating a query. In principle, many

different question patterns could be def'med to handle the multitudinous ways in which questions

are posed by people; this would simply involve adding more lexical patterns to the system to

handle such cases. As it stands, the format for queries has been chosen to be similar to the format

used by the User Interface point and click mechanism.

77

What is the (requested-item) [and the (requested-item)]

[for the (given-item)] [when the (item) is (specifier)]

[and the (item) is (specifier)] *q-mark*

"What is the failure mode for the ring concentrator when

the failure mode is loss of output - failure to start ?"

What are the (requested-item) In the (given-item)

when the (item) is (specifier) *q-mark*

"What are the detection steps in the next node detection

procedure when the failed component Is the ring concentrator ?

Figure 5.5
The Two Question Formats

Once a question MOP is instantiated and activated by recognizing one of the two question

patterns, the information in the slots is extracted by an associated function attached to the

question MOP. The memory search functions detailed in the section on Memory Creation and

Retrieval are then invoked by the question MOP, and control is relinquished to the search module,

which performs the search and generates the result.

5.3.2 An Annotated Question Example

The process of parsing a question will now be illustrated by an annotated trace. This trace

is heavily edited; it is assumed that the reader is familiar with the parsing mechanism from the

earlier trace of the parsing of case RC.1. Only those features specific to the processing of a

question will be highlighted.

Parsing
(WHAT IS THE FAILURE CAUSE FOR THE TIME GENERATION UNIT *Q-MARK*).

Reading WHAT

(WHAT * IS THE (REQUESTED M-QUESTION-CONSTRAINT) AND THE
(REQUESTED M-QUESTION-CONSTRAINT) FOR THE (GIVEN M-QUESTION-CONSTRAINT)

WHEN THE (STATE M-STATE-ASSERTION) AND THE (STATE M-STATE-ASSERTION)

• Q-MARK*) ---M-QUESTION

(WHAT * ARE THE (REQUESTED M-AND-GROUP) IN THE
(GIVEN M-QUESTION-CONSTRAINT) WHEN THE (STATE M-STATE-ASSERTION)

• Q-MARK*) = M-QUESTION2

As was discussed earlier, there are two query formats. These are stored with the question

word "what", and both become active upon parsing that word.

Reading IS
(WHAT IS * THE (REQUESTED M-QUESTION-CONSTRAINT) AND THE

(REQUESTED M-QUESTION-CONSTRAINT) FOR THE (GIVEN M-QUESTION-CONSTRAINT)

WHEN THE (STATE M-STATE-ASSERTION) AND THE (STATE M-STATE-ASSERTION)

• Q-MARK*) ---M-QUESTION

?8

Reading THE
(WHAT IS THE * (REQUESTED M-QUESTION-CONSTRAINT) AND THE

(REQUESTED M-QUESTION-CONSTRAINT) FOR THE (GIVEN M-QUESTION-CONSTRAINT)
WHEN THE (STATE M-STATE-ASSERTION) AND THE (STATE M-STATE-ASSERTION)
• Q-MARK*) = M-QUESTION

Reading FAILURE

Reading CAUSE
(FAILURE CAUSE *) = M-FAILURE-CAUSE referenced

Specializing: I-M-FAILURE-CAUSE.4416
(WHAT IS THE (REQUESTED M-QUESTION-CONSTRAINT) * AND THE

(REQUESTED M-QUESTION-CONSTRAINT) FOR THE (GIVEN M-QUESTION-CONSTRAINT)
WHEN THE (STATE M-STATE-ASSERTION) AND THE (STATE M-STATE-ASSERTION)
•Q-MARK*) = M-QUESTION

The MOP class M-QUESTION-CONSTRAINT organizes two types of MOPs, systems

and procedures. These are the only types of knowledge representation that are allowed to be

slots within a question MOP. Since a failure cause is a type of procedure, it satisfies the

requirement of the "requested" slot, and the pattern can be advanced. Note that siiace the parser

is in question mode while parsing this question, the MOP I-M-FAILURE-CAUSE.4416 is not

indexed in the generalization indexing hierarchy. This prevents a content-less MOP like this one

from being used to draw generalizations from text, particularly since that text has no relevance to

describing faults in the domain.

Reading FOR
(WHAT IS THE (REQUESTED I-M-FAILURE-CAUSE.4416) AND THE

(REQUESTED M-QUESTION-CONSTRAINT) FOR * THE
GIVEN M-QUESTION-CONSTRAINT)WHEN THE (STATE M-STATE-ASSERTION)
AND THE (STATE M-STATE-ASSERTION) *Q-MARK*) = M-QUESTION

Since the "and the..." part of the phrase is optional, the pattern can still be advanced past

the point of the word "for".

Reading THE
(WHAT IS THE (REQUESTED I-M-FAILURE-CAUSE.4416) AND THE

(REQUESTED M-QUESTION-CONSTRAINT) FOR THE * (GIVEN M-QUESTION-CONSTRAINT)
WHEN THE (STATE M-STATE-ASSERTION) AND THE (STATE M-STATE-ASSERTION)
•Q-MARK*) = M-QUESTION

Reading TIME
(TIME * GENERATION UNIT) = M-GENERIC-TGU

Reading GENERATION
(TIME GENERATION * UNIT) = M-GENERIC-TGU

Reading UNIT
(TIME GENERATION UNIT *) = M-GENERIC-TGU referenced

Specializing: I-M-GENERIC-TGU.3723

79

(WHATISTHE(REQUESTEDI-M-FAILURE-CAUSE.4416)ANDTHE
(REQUESTEDM-QUESTION-CONSTRAINT)FORTHE(GIVENM-QUESTION-CONSTRAINT)
* WHENTHE(STATEM-STATE-ASSERTION)ANDTHE(STATEM-STATE-ASSERTION)
Q-MARK)= M-QUESTION

As noted before, systems fulfill the M-QUESTION-CONSTRAINT filler constraint. The

time generation unit thus works as a filler for the "given" slot.

Reading *Q-MARK*
(WHAT IS THE (REQUESTED I-M-FAILURE-CAUSE.4416) AND THE

(REQUESTED M-QUESTION-CONSTRAINT) FOR THE (GIVEN I-M-GENERIC-TGU.3723)
WHEN THE (STATE M-STATE-ASSERTION) AND THE (STATE M-STATE-ASSERTION)
Q-MARK *) -- M-QUESTION referenced
Specializing: I-M-QUESTION.4421

The state assertions are also optional dements of the question phrase, so the pattern can

be advanced and recognized. Question MOPs have functional code associated with them that

interface to the Memory Creation and Retrieval Module. Once the question MOP is recognized,

the slots are passed down to Memory Search and Retrieval, where the query is created and

processed.

Performing Search:

[1] ERRONEOUS INPUT
[2] PIECE-PART FAILURES
[3] CONTAMINATION
[4] TEMPERATURE (HIGH OR LOW)
[5] MECHANICAL SHOCK
[6] THERMAL SHOCK

Found good match. Elaborate further anyway? (Y/n) n

Once the user has specified that she or he is satisfied with the results of the query, control

is returned to the parser, which in this case cleans up any index patterns that were not resolved

during the parse.

Removing: I-M-IP.4385.4410
Removing: I-M-IP.479.4418
Removing: I-M-IP.481.4417
Removing: I-M-IP.479.4414
Removing: I-M-IP.481.4413
Removing: I-M-IP.4384.4411

5.4 Generating Answers to Input Questions

Just as the parser maps text into the conceptual structures that underlie it, some

mechanism is needed to map memory structures back into natural language. This is the task of

the generator. The generator relies on the same stereotypical patterns of language usage that the

parser relies on, since most of the same index patterns that are used to parse text are used to

generate back into text.

80

Thealgorithmfor generationis asfollows:

.

2.

3.

4.

Choose a MOP to generate.

Find the fh-st index pattern with that MOP as its target that satisfies any

imposed constraints (such as syntactical constraints).

If no such pattern exists, look for a pattern up that MOPs abstraction

hierarchy.

A. If no pattern is found, simply return the MOP name (e.g. words

return the word name).

B. Otherwise, for each element of the pattern, recursively apply this

generation algorithm.

As an example, consider the generation of the MOP I-M-TIME-OUT-EVENT.144.507.

A portion of the indexing hierarchies characterizing this MOP is shown in figure 5.6. The

following is a trace by the generation function which details the execution of the algorithm just

described:

>(generate I-M-TIM E-OUT-EVENT.144.507)
Checking mop I-M-TIME-OUT-EVENT.144.507 for phrases:

Found: NIL
Checking mop M-TIME-OUT-EVENT.144 for phrases:

Found: NIL
Checking mop M-TIME-OUT-EVENT for phrases:

Found: (M-IP.358)
Considering phrase M-IP.358:

((1 (M-SYNTAX-CATEGORY RECIPIENT M-SYSTEM)) (2 WILL)
(3 REACH) (4 A) (5 TIME-OUT) (6 LIMIT) (7 FOR) (8 RECEIPT) (9 OF)
(10 THE) (11(M-SYNTAX-CATEGORY MESSAGE M-MESSAGE))
(12 *PERIOD*))

Using phrase: M-IP.358
Checking mop I-M-SYSTEM-SM for phrases:

Found: NIL
Checking mop M-SM for phrases:

Found: (M-IP.338)
Considering phrase M-IP.338:

((1 SYSTEM) (2 MANAGEMENT))
Using phrase: M-IP.338
Checking mop I-M-TOKEN.491 for phrases:

Found: NIL
Checking mop M-TOKEN for phrases:

Found: (M-IP.339)
Considering phrase M-IP.339:

((1 NETWORK) (2 TOKEN))
Using phrase: M-IP.339

("SYSTEM" "MANAGEM ENT" "WILL" "R EACH" "A" "TIM E-OUT" "LIMIT" "FOR"
"RECEIPT" "OF" "THE" "NETWORK" "TOKEN" ".")

81

IMTos;ssooE,e
LM Evont,,,I

{systemH I I I
rnan_:jement}J T_ _ m_ I " It°ken} I

, I I I

M-IP.358

{(recipient) will reach a
time out limit for receipt of

the (message) *period*}

Figure 5.6
Sample Hierarchy for I-M-Time-Out-Event.144.507

One constraint on the generation of patterns is that of syntax. Patterns may be given

membership within a syntactic category during pattern definition time using the syntax-category

attribute shown previously in figure 5.2. Fillers for slots within patterns may also be syntactically

constrained. In order to use a pattern for the generation of a slot fdler, it has to be of the same

syntactic category as that slot constraint. This allows the generator to generate in a syntactically

correct manner, rather than just stringing together syntactically inconsistent phrases. For

example, consider another phrase that might have M-TIME-OUT-EVENT as its target: "the

timing out of the (system) for the (message)". This phrase might be assigned to a category like

VERB-PHRASE. We would not want to use it to generate a complete sentence, since it wouldn't

be proper grammatically, whereas the phrase in the annotated trace works fine for this purpose.

These constraints can be controlled through the use of syntactic categories. In practice, the index

patterns within FANSYS are syntactically unconstrained, since the text has been simple enough so

as not to cause problems. Should the lexical domain become more richly enhanced, however,

some form of syntactic constraint is needed. The syntactic constraints that can be placed upon a

pattern provide for just such measures, should they become necessary.

Although in theory the exact same patterns could be used to generate output that are used

to parse text, there are in practice some constraints placed on patterns in terms of whether they

should be used only for generation, only for parsing, or both. Most of the patterns in the system

are used for both parsing and generation, but a few are modified with :gen and :nogen in the

pattern definitions detailed previously in figure 5.2. The :gen specifies that a pattern should be

used for generation only, while a :nogen modifier specifies that a pattern should be used only to

parse text. An example of a pattern that might be marked with a :nogen modifier is that which
characterizes the sentence S 1: "indication of a RC failure to start is first detected by the next

active node on the network," which is a pointer to the M-NEXT-NODE-DETECTION

procedure. (See the detection procedure section of the annotated parse trace for the actual index

pattern which is used to characterize S 1.) When generating the M-NEXT-NODE-DETECTION

procedure, it is preferable to have as much information characterizing that procedure included

within the generation; this most certainly includes the steps of the procedure. Generating from the

pattern which characterizes S 1 would not include that information; it would generate essentially
the same sentence as S 1. It is therefore marked with the :nogen specifier.

82

The indexpattern that is actuallyusedto generateanysort of procedure(includingM-
NEXT-NODE-DETECTION) is onesimilarto IP2: { (1 M-EVENT) (2 M-EVENT) ... } => M-
PROCEDURE,where(1), (2), andsoon aretheactualeventsthat composetheprocedure. IP2
generatesa list of sentences describing the actual procedure under consideration. This is too

abstract of a pattern to be used in parsing procedures, however, since the construction of a

procedure is typically more involved than just listing together events (there is some search and

recursive construction of the procedure that occurs; see the annotated parse trace for some of the

details). IP2 is therefore marked with the :gen modifier, which specifies that it be used only for

generation.

Although the :nogen and :gen specifiers exist, they are in practice seldom used, since most

of the patterns defined in the system are useful for both parsing and generation. Were a more

sophisticated generation algorithm in place, one which considered the space of all available

patterns and chose the pattern which best characterized the concept to be generated (rather than

just choosing the first pattern it finds), then the :nogen and :gen modifiers could probably be

abandoned. Since generation per se has been a secondary concern to the project, a simple

generation algorithm with the :gen and :nogen functionality has been chosen to perform

generation. Within this limited domain, this approach has proven sufficient for the generation

tasks required by FANSYS.

83

6. Memory Creation and Retrieval

The ISA, Lexical, and Slot-Filler hierarchies described in sections 3 and 4 organize items

hierarchically under predefined categories. For example, index patterns are lumped underneath the

index pattern MOP, lexical entries are grouped underneath the lexicon MOP, and so forth. In

addition, the ISA and Slot-Filler memory hierarchies index cases by only one path that does not

contain generalizations across cases. While this organization is useful for the parsing process, it is

not an organization which is appropriate for retrieving applicable cases during a

question/answering session.

During question/answering FANSYS must be able to quickly retrieve either

generalizations of its knowledge, or specific cases from a potentially large database of cases. Our

solution to this problem in FANSYS is to overlay an additional indexing structure on top of the

ISA memory hierarchy. This additional indexing structure is based upon the memory

representation model used in Kolodner's CYRUS system (Kolodner, 1983a, 1983b, 1984).

Collectively, these indices form a rich hierarchy of generalizations where many indices point to

each case. Since this memory representation allows for indexing and the creation of

generalizations, this hierarchy will be referred to as the Generalization-Indexing (GO memory

hierarchy. Although similar to the indices used by Kolodner in CYRUS, the GI indices employed

in FANSYS differ in that they allows for attribute values to be represented hierarchically.

In addition to allowing for case retrieval, the GI memory hierarchy allows FANSYS to

perform memory tasks similar to those performed by CYRUS, including: (1) generalization across

cases, (2) encoding specificity" by grouping similar cases together, (3) fast retrieval by limiting

memory traversal to relevant indices, and (4) elaboration strategies which dictate where in

memory to search if the initial search query fails. Before discussing the details of the algorithms

used in FANSYS for these tasks, the underlying data structures and the method in which

comparisons across cases are made must be discussed.

6.1 MOP Attributes

As in the other hierarchies, the fundamental data structure used in the GI memory

hierarchy is also the Memory Organization Packet (MOP). To recap, a MOP is a unit which

represents a particular concept. By grouping MOPs hierarchically, high-level MOPs represent
abstractions of the MOPs below it. There are two types of MOP's: the MOPs located at the

bottom of the memory hierarchy are instances (denoted I-M-MOPNAME), while the MOPs

which organize the instances are abstractions (denoted M-MOPNAME).

While the same MOP structure is used in all of the memory hierarchies, the GI memory

hierarchy requires the use of several different constructs. The bad-indices of the MOP indicate

attributes which do not make good indices. The ¢laborations of the MOP indicate other MOPs

which may aid in memory retrieval. The role of both of these attributes will be discussed in the

sections of memory creation and retrieval. The slot of the MOP contains the conceptual definition

* Encoding specificity (Tulving, 1972) refers to the psychological phenomenon of memory case reUieval based
upon the features present in the original processing of the case. Case retrieval can only occur if these features
have been discriminated.

84

of the MOP. The norm of the MOP contains generalized information about it's sub-MOPs

(specializations). Finally, the _ of the MOP contain attribute/value pairs which point to its

sub-MOP specializations. In FANSYS, attributes are atomic but values may be defined

hierarchically.

Attributes, slots, and the values of indices all use the same list-based tree structure. This

representation employs lists which may contain other lists, which may in turn contain other lists.

By linking these lists together, detailed tree-like structures can be created. The general format for

these lists is ((role filler) (role filler) ...), where the role is an atomic attribute, and the filler is

either an atomic element or recursively defined as another list of the same structure.

To illustrate this format, consider the following example taken from the failure detection

procedure for the ring concentrator. In this procedure, a faulty ring concentrator is detected

when the next ring concentrator in the network fails to receive a token from the previous ring

concentrator. As a precondition for this procedure, the next ring concentrator must be ready to

receive a token from the previous ring concentrator. This is represented below as the READY-

TO-RECEIVE event, where the RECIPIENT is the next ring concentrator (I-M-NEXT-RC), the

SENDER is the current ring concentrator (I-M-RC), and the object being sent is a token (I-M-

TOKEN):

(PRECOND ((HEADER I-M-READY-TO-RECEIVE)

(SENDER

((HEADER I-M-RC)

(SOFTWARE

((HEADER M-SM)

(SOFTWARE M-SOFTWARE-COMPONENT)))

(HARDWARE
((HEADER M-TRANSMITrER)

(SOFTWARE M-SOFTWARE-COMPONENT)

(HARDWARE M-HARDWARE-COMPONENT)))))

(RECIPIENT

((HEADER I-M-NEXT-RC)

(SOFTWARE

((HEADER M-SM)

(SOFTWARE M-SOFTWARE-COMPONENT)))

(HARDWARE
((HEADER M-TRANSMITtER)

(SOFTWARE M-SOFTWARE-COMPONENT)

(HARDWARE M-HARDWARE-COMPONENT)))))

(OBJECT I-M-TOKEN)))

In this example, the top-level list is of the form:

((PRECOND (SENDER (...)) (RECIPIENT (...) (OBJECT I-M-TOKEN)))

85

Theinformationcontainedwithin theellipsesisdefinedwith an identicalstructure. In this
particularexample,theSENDERandRECIPIENTarering concentrators which in turn have two

sub-components, a software and a hardware component. The software component is the system

management (M-SM), while the hardware component is a transmitter (M-TRANSMITTER).

Notice that these components are defined recursively, in that they have their own hardware and

software components. If finer detail is required, more components can be added and each

component can be further defined in terms of sub-components.

This representation scheme allows FANSYS to accurately represent a variety of devices,

actions, events, procedures, or concepts in terms of aggregates or semantic meaning. The slots,

norms, and indices of the GI memory hierarchy all use this same format. For instance, if the

previous example is a slot, then the conceptual content of the MOP would be the ready-to-receive

event for a ring concentrator. If the example is a norm, then a generalization of the MOP would

be the ready-to-receive event, and sub-MOPs would represent specializations of ready-to-receive.

Finally, if the examples was used in an index, then the ready-to-receive event would serve as the

link between another MOP concept.

6.2 Linking MOPs

As described above, the values of indices which link MOPs take the form of detailed lists,

where the lists may represent hierarchical concepts. Similarly, the method in which MOPs are
linked is also hierarchical. Just like the ISA memory hierarchy, the GI memory hierarchy is also

organized in terms of abstractions and instances. Abstract MOPs occupy the internal nodes of the

tree, while specific instances occupy the leaves. However, unlike the ISA hierarchy, the GI

hierarchy is much more richly indexed. In the GI hierarchy, each instance will be indexed by all

possible features of that instance. This results in multiple retrieval paths and "deep learning" of

each case.

Indices are internally represented within each MOP by the form: ((Attribute Value Next-

MOP) (Attribute Value Next-MOP) ...), where Attribute is an atomic feature, Value is a list of the

form described in the previous example, and Next-MOP is the name of the MOP which is linked

by the index. Using this representation, indices are uni-directional and always point downwards in

the hierarchy towards more specialized MOPs.

The rule for linking MOPs together is to use index values which differ from the norms.

Cases which are similar to one another will be grouped close together, but these cases will be

indexed in the manner which they differ from each other. This indexing strategy allows

distinguishing features to be the factor which determines which cases are retrieved. The actual

algorithm used to select these indices will be presented in the section on memory creation.

As an example, consider the MOP M-CASE. This MOP organizes all cases stored in

memory. Any norms which this MOP may contain apply to all cases in memory. MOPs which

are indexed directly below M-CASE are a bit more specialized; MOPs indexed below these MOPs

are even more specialized, and so on, until we finally reach the instances at the leaves of the

hierarchy. Each MOP contains norms which are the generalizations of all MOPs below it.

Furthermore, each MOP is indexed by the way in which it is different from other MOPs. If the

86

MOPshad the configurationof indicesshownbelow they would encodethe samplehierarchy
showngraphicallyin figure 6.1. To keep this examplesimpleonly a few indiceshave been
specified.Theactualimplementationcontainsmanymoreindices.

M-CASEindices:
((FAILED-COMPONENT ((HEADER I-M-RC) ...) M-MOP. 1)

(FAILED-COMPONENT ((HEADER I-M-GW) ...) M-MOP.2)

(FAILURE-CAUSE ((HEADER I-M-THERMAL-SHOCK)...) I-M-MOP.3))

M-MOP.1 indices:

((FAILURE-CAUSE ((HEADER I-M-THERMAL-SHOCK)..) I-M-MOP.4)

(FAILURE-CAUSE ((HEADER I-M-CONTAMINATION)..) I-M-MOP.5)

M-MOP.2 indices:

((FAILURE-MODE ((HEADER I-M-ERRONEOUS-OUTPUT)..) I-M-MOP.6))

M-MOR1
Norms Fobd-Cempon=_- RC

Detection=_Ne=l--Node

Indices Fai_m-Caum

M-CASE i

Nonls Fau_d-Co mpon_,t - GW
FaikJre-Mode-E rroneous

Indices Fsilure- Modo

Figure 6.1
Sample GI Memory Hierarchy

In this example, the attribute of FAILED-COMPONENT may take on two different

values. MOP.1 is linked to M-CASE if the value of the FAILED-COMPONENT is ring

concentrator. MOP.2 is linked to M-CASE if the value of the FAILED-COMPONENT is

gateway. I-MOP.3 is linked to M-CASE if the value of the FAILURE-CAUSE is thermal shock.

In this example, the ellipses denote that additional details may be specified for the attribute's

values, as in the previous example (to specify the hardware components, software components,

etc.). Just like the MOP M-CASE, MOPs 1 and 2 have indices of their own pointing to more

specialized MOPs. The values of the indices indicate the ways in which MOPs differ from one

another. MOPs 1,4, and 5 all involve the failure-component of a ring concentrator. I-MOP's 4

and 5 are further differentiated by the failure-cause. 1-MOP 4 is indexed by thermal shock, while

I-MOP 5 is indexed by contamination. Finally, generalizations are stored at all sub-MOPs. In

this example, I-MOPs 4 and 5 share the failed-device and the failure cause. This generalization is
stored as the norms of their common abstraction, MOP 1. Similarly, the norms of MOP 2

contain the generalizations of all sub-MOPs, in this example I-MOP 6.

87

Unlike the ISA hierarchy,eachindexin theGI hierarchyhasanattributeandavalue. As
a result,whenMOPsare accessedby traversingtheseindices,we arenow accessingMOPs by
their meaning.This will greatly speedup theretrievalprocessby limiting memorytraversalto
only those indices which correspondto the memoryquery. Consequently,search will be
constrainedto only relevantportionsof memory. Kolodner describes the attribute/value indices

as "locks". In order to access a structure, we must have the "key." In this case, the key

corresponds to the value of an index. As more keys become available, more locks can be opened.

Analogously, as more features are provided to the system, the greater the probability of accessing

a relevant case increases since more indices can be traversed. Kolodner's notes that this behavior

mirrors Tulving's encoding specificity hypothesis, as well as several other psychological results

(Kolodner, 1983).

It is important to remember that the GI memory hierarchy is not completely separate from

the ISA memory hierarchies. Instead, the GI hierarchy is "overlaid" on top of the ISA memory

structures. Both the GI hierarchy and the ISA hierarchies share the same root MOPs and the

same instance MOPs. The two hierarchies differ in the way the root MOP is connected to the

instances. The GI hierarchy uses a rich set of indices, while the ISA hierarchy uses only

enumerated indices. This integration is illustrated in figure 3.5 in the system architecture section.

An area of future work is to merge these two hierarchies into a single hierarchy which combines

features of both memory schemes.

6.3 Comparing Cases

Before discussing the algorithms used for memory creation and retrieval, an important

operation which must be understood is how concepts are compared. All slots, indices, and norms
are stored in the form of lists specified in the section on MOP attributes. When creating

generalizations, adding new MOPs to memory, or determining which indices can be traversed, the

comparison operation must be invoked. This operation is made more complicated due to the

hierarchical representations of concepts. For example, a standard data processor running a

particular program might be represented as ((HEADER I-M-SDP) (SOFTWARE I-M-
PROGRAM.l)), while a standard data processor running a different program might be

represented as ((HEADER I-M-SDP) (SOFTWARE I-M-PROGRAM.2)). If strict equality were

used to compare these two representations, we would end up with the result that the components

are not equal. However, both components are standard data processors. A more useful

comparison operation would return an answer which indicates how well one item matches with

another.

The comparison function implemented in FANSYS returns more meaningful information

by computing a percentage of match between two concepts. The algorithm considers which

values to compare in a top-down, depth-ftrst manner and then propagates the percent comparison

for each value in a bottom-up fashion. An overview of the COMPARE algorithm is described

below.

88

Givenalist of attribute/valuepairsfrom atargetT,
andaqueryQ,startat thetopmostlevel:
(0) SetM=0
(1)For eachattribute/valuepair in Qdo:

If T containsthesameattributethen
If Ts value = Q's value set M=M+I

else if Ts value is a list

Set M=M+ (recurse to step 1 using

the values of Q and T)

(2) Return M/(Number of attribute/value pairs in Q)

An example of comparing two cases is given below. The target case is a subset of the

example described in the previous section on MOP attributes. The query is similar to the target

except some of the slots do not exactly match. A sender is specified in the query but is missing in

the target, and one of the ring concentrator's software components within the query is different

than the target.

Case= ((RECIPIENT

((HEADER I-M-NEXT-RC)

(SOFTWARE

((HEADER M-SM)

(SOFTWARE M-SOFTWARE-COMPONENT)))

(HARDWARE

((HEADER M-TRANSMITTER)

(SOFTWARE M-SOFTWARE-COMPONENT)

(HARDWARE M-HARDWARE-COMPONENT)))))

(OBJECT I-M-TOKEN))

Query= ((RECIPIENT

((HEADER I-M-NEXT-RC)

(SOFTWARE

((HEADER M-SM)

(SOFTWARE M-S OFrWARE-COMPONENT)))

(HARDWARE

((HEADER M-TRANSMITTER)

(SOFFWARE M-PROGRAM-2)

(HARDWARE M-HARDWARE-COMPONENT)))))

(SENDER M-RC)

(OBJECT I-M-TOKEN))

The case and query are depicted graphically in figures 6.2 and 6.3.

89

J Query I

Figure 6.2

Graphical representation of sample query

[C_e I

x,.oI
.,_ / _*_,E_N._____.--

[_] _ IM-Softwarel _d-I-lanlware] IM-T_$rnXc_J

Figure 6.3
Graphical representation of sample case

The top-down stage of the algorithm determines which attributes should be compared.

At the top-most level, the query consists of ((RECIPIENT ...) (SENDER ...) (OBJECT ..)). The
attributes are RECIPIENT, SENDER, and OBJECT. The algorithm loops through each of these

attributes and checks whether or not the case also contains the same attribute. In this example,

RECIPIENT is contained within the target case. However, the value does not exactly match the

query, and it is a list, so M will be set to M+X, where X is some value determined recursively via

Compare((HEADER ..) (SOFTWARE ..) (HARDWARE..)). The next attribute is SENDER.

However, the target contains no sender attribute, and so nothing is done. The last attribute is

OBJECT. The target does have an OBJECT attribute, and the value matches the query exactly,

so M is set to M+I. When the algorithm is f'mished, M=X+I, and the ratio (X+l)/3 will be

returned. Values for the entire computation of the query are shown below, starting from the

bottom-up, l's indicate matches, and ?'s indicate values which haven't been computed yet.

90

((RECIPIENT ?
((HEADER 1)

(SOFTWARE?
((HEADER 1)
(SOFTWARE I)))

(HARDWARE ?)

((HEADER 1)

(SOFTWARE O)

(HARDWARE I)))))

(SENDER O)

(OBJECT 1))

Percentages propagate up from the leaves:

((RECIPIENT

((HEADER 1)

(SOFTWARE 2/2)

((HEADER 1)

(SOFTWARE I)))

(HARDWARE 2/3)

((HEADER 1)

(SOFTWARE 0)

(HARDWARE 1)))))

(SENDER 0)

(OBJECT I))

These values propagate up again:

((RECIPIENT

((HEADER 1)

(SOFTWARE 1)

(HARDWARE 2/3)))

(SENDER O)

(OBJECT 1))

The final match percentage is given as: .(((1+1+2/3)/3) + 0 + 1) / 3 = 0.63

The backed-up values are depicted on the graphical representation of the query shown

below in figure 6.4. The horizontal slashed line for "Sender" indicates a comparison which is

never made since there is no Sender slot in the case.

91

Class: Next-RE E_

Figure 6.4

Comparing case from figure 6.3 against query from figure 6.2. Numerical values on the right
indicate backed-up values. The horizontal line indicates a comparison which is never made since
the attributes do not match.

Notice that this process compares the case against the query. If the query is compared

against the case, then a different match percentage would be returned.

The percentage returned by the comparison function indicates that the case matches the

query with 63% accuracy. While this number indicates how well features of the cases match, it

doesn't include any measure of which features are more relevant than others. This problem

requires additional semantic knowledge not directly addressed in the current implementation of

FANSYS.

An algorithm similar to the one used to compare cases is also used to determine the

similarities and the differences between cases. Determining similarities and differences are

important in the memory creation process to create new generalizations and new indices.

Computing the similarities between cases uses almost the exact same algorithm used to

compare cases, except equivalent values are saved as the algorithm runs. Computing the

similarities between the case and query of figures 6.2 and 6.3 yields:

Sim = ((RECIPIENT

((HEADER I-M-NEXT-RC)

(SOFI'WAP_

((HEADER M-SM)

(SOFTWARE M-SOFTWARE-COMPONENT)))

(HARDWARE

(0-_ADER M-TRANSMITtER)

(HARDWARE M-HARDWARE-COMPONENT)))))

(OBJECT I-M-TOKEN))

Any attributes or values which are not present in both cases is simply removed from the

end result. Finding similarities will be used in determining the norms of MOPs so that

generalizations may be created.

92

Finally,computingthe differencesbetweencasesalsofollows a similaralgorithmto the
comparisonalgorithm. However, whenvaluesof the query and casedo not match,the case
valuesare storedand eventuallyreturned. Justlike the comparisonalgorithm,computingthe
differencesof case1 vs. case2 is different from computingthedifferencesof case2 vs. case1.
When two valuesaren't the same,what shouldbe returned,the mismatchfrom casel or the
mismatchfrom case2? Theapproachtakenin FANSYSisto usethedifferenceswith respectthe
secondcase. Typically,the functionto computethedifferenceswill becalledtwice,onceto get
thedifferencesfor case1andagainthegetthedifferencesfor case2.

In ourexamplewith thequeryandtargetcase,computingthedifferencesbetweenthecase
andquerywith respectto thequeryreturnsmismatchesfromthequery:

Dif = ((RECIPIENT

(HARDWARE

((SOFTWARE M-PROGRAM2))))

(SENDER M-RC))

Similarly, computing the differences between the query and the case with respect to the

case returns mismatches from the case:

Dif = ((RECIPIENT

(HARDWARE

((SOFTWARE M-PROGRAM2)))))

The attribute/value pair of (SENDER M-RC) is not included since this isn't part of the

case, but part of the query.

6.4 Memory Creation Process

With the underlying data structures def'med and the algorithms for comparison, computing

differences, and computing similarities developed, these components can now be combined into

the memory creation process. As described earlier, the GI memory hierarchy must be organized

so that MOPs are indexed by their differences, similar cases are grouped together, and the norms

of MOPs hold the generalizations of all cases below it. These tasks are discussed by Kolodner in

her work on long-term memory (Kolodner, 1983).

To accomplish these tasks within FANSYS, the GI memory system must first be given a

case to index. This case will be some type of instance with a set of slots and attribute/value pairs

which describe the conceptual content of the case. These instances are generated as the parser

processes some text. This means that each instance created by the parser will also be passed to

the GI memory system for indexing. In addition to passing the GI memory system a case, the

parser will also pass a MOP where indexing should begin. For instances of entire cases this would

be M-CASE (the MOP which organizes all cases), for components this would be M-ORU, and so

On.

93

Oncea caseand a MOP location to beginindexinghasbeendetermined,theprocessof
memorycreationcan begin. First, the caseis separatedinto its attribute/valuepairs. At this
point, we would ideallylike to weedout any irrelevantattributesandretainonly the distinctive
attributes. This is the difficult feature-selectionproblem. In the current implementationof
FANSYS, non-predictivefeatureshavebeenpreselectedand storedin the bad-indexslot of the
MOP. Any attributeswhich aremarkedasbad-indicesare thendiscarded.For completecases,
the failure-mode, failed-component,failure-detectionprocedure, and the failure-correction
procedure are all predictive attributes, but the failure-causeand the failure-effects are
nonpredictivesincevirtually all casessharethesamevaluesfor theseattributes. By strippingthe
nonpredictiveattributes,memorywill be lessclutteredandmoremeaningful.However,notethat
it is not crucial to removetheseattributes;if they arenot removedFANSYS will still function
normally,but will have larger memoryrequirements. While the current implementationof
FANSYSrequirestheseattributesto bespecifiedby thedesigners,future work includeslearning
nonpredictiveattributesautomaticallythroughpre-processingor a real-timestatisticalanalysisor
clusteringof thedata.

After relevantindiceshavebeenselected,the similaritiesbetweenthecaseandthenorms
of thecurrentMOP arecomputingusingthesimilarityfunction. The normsof theMOP arethen
set to thesesimilarities. This guaranteesthat the norm will only hold generalizedinformation
whichappliesto all caseswhichhavebeenprocessedby thecurrentMOP.

The nextstepis to traverseanyindiceswhoseattributeandvaluematchanattributeand
value of the new case.To determineif the index matchesan attribute, the previouslydefined
comparisonfunctionmust be invoked. If the indexandthe attribute'svaluematchgreaterthan
somethresholdvalue,thentheindexis traversed.In FANSYS, this thresholdwasarbitrarily set
at 0.5. Further experirnentsare necessaryto determineif other thresholdvaluesare more
appropriate. In general,a low thresholdvalue will makeindicesvery easyto traverse. For
example,a thresholdof 0 would result in all indicesbeingtraversedif thevalueshadanythingat
all in common,no matterhow small.This will resultin muchgeneralization,but alsomoreindices
will becreatedleadingto potentialmemoryproblems. A highthresholdvaluewill requirea very
closematchand makeindicesharderto traverse. While fewer indiceswould becreated,less
generalizationwouldbemadebetweencases.

By only traversing matching indices, traversal is restricted to relevant indices. If no

indices match, then a new index is created which points to the new case. If matching indices do

exist and the indexed MOP is a generalization, then the entire procedure is repeated recursively

using the new MOP as the entry point. However, if the indexed MOP is a specific instance, then

the differences between this instance and the new instance are computed, and these two cases are

then indexed by their differences.

By traversing to the end of the hierarchy along matching indices, we will end up grouping

similar cases together. Ultimately, cases are indexed by their differences, so the unique features of

a case will be the crucial indices which lead to a case. Notice that this entire process applies to all

matching indices at every step of the computation; this results in the creation of many redundant

indices - each case will be indexed by all features of the case itself.

94

Thealgorithmcontrollingthememorycreationprocessis asfollows:

0. Givenanewinstancecaseto addandastartingMOP"
1. Select:
A) Featuresto useasindices
B) Removefeaturesnotedasbadindices

2. Createnew Instance-MOPwith slotsof thenewcase
3. Startat thegivenentryMOP:
A) Setnormsto similaritiesbetweennorms,case
B) For all attribute/valuepairsin thenewcase:

1) If matchingindexfrom thecurrentMOPdoesn't
exist,createonepointingto thenewcase.

2)Else if indexexiststo M-MOP (abstraction),recurse
with thenewMOPastheroot (step3), with the
caseattributesminustheattribute/valuepairswhich
havealreadybeenprocessed

3) Elseif indexexiststo Instance-MOPthen:
Createnew M-MOP
Calculatesimilaritiesbetweeninstance,newmop.
Add similaritiesasnormsto newM-MOP.
Calculatedifferencesbetweeninstance,newmop.
IndexMOPSbasedondifferencesfrom newM-MOP.

An example of the memory creation process is shown in figures 6.5 and 6.6. For each

case which is added to memory, the non-predictive attributes are removed and a new instance of

the ease is created. For entire eases, the entry MOP will be M-Case; i.e., all eases will be indexed

under the Case MOP. Next, indices which match the new instance will be traversed. When

collisions with other instances occur, new indices will be created based upon the differences

between the two instances. When the first case is added to memory, there are no indices from

M-Case to traverse. Consequently, the new case is simply indexed by all the attributes of the

case. This is shown in figure 6.5 for I-M-RC.1, the ring concentrator case where the Failure

Mode is Startup-No-Output. In this figure, the indices of the Failure Mode, Failed Component,

and Failure Correction procedure are shown. Indices are also created for the Failure Cause,

Detection Procedure, and the Effect, but these are not shown.

95

[M-RootJ

I

Output \ /with Spare

/
II-M-RC. I

Figure 6.5

GI hierarchy after adding a single ring concentrator case to memory. Only the failure mode, failed

component, and failure correction links are shown here.

Figure 6.6 shows how memory organizes itself when a second case is added to memory.

In this figure, I-M-RC.1 has already been processed when I-M-GW. 1 is given to the system. This

new case involves the gateway rather than the ring concentrator. Both cases have the same

Failure Mode of Startup-No-Output, and the same long-term Failure Correction Procedure of

Replace-with-Spare, but the cases differ in the component which has failed. When I-M-GW.1 is

processed, matching indices will be traversed until no more indices exist or a collision occurs. For

example, since both cases share the index of Failure Mode, this index will be traversed. A
collision will then occur at I-M-RC.1. A new sub-mop, M-Generalization.1 will be created, and

the generalizations between I-M-RC.I and I-M-GW. 1 are computed and used as the norms for
M-Generalization.1. Next, the differences between I-M-RC.1 and I-M-GW.1 are computed and

both instances are indexed from the new generalization based upon these differences. In this

example, the cases differ in the Failed Component, so indices of the different failed components

are created to access the two instances.

A similar process occurs by traversing the Failure Correction Procedure index, resulting

in M-Generalization.2. Since only two cases have been processed, M-Generalization.2 will be

identical to M-Generalization.1. However, these MOPs will be different as more cases are

processed and different generalizations are computed. Finally, new indices are also created from

M-Case for a Failed Component equal to the Gateway, since this index values does not currently

exisL This entire process would also occur for the indices which are not shown in the figure (e.g.,

Failure Detection Procedure, Failure Cause).

In addition to organizing cases according to their differences, the memory creation

algorithm also generalizes across all cases and their components. In the example shown, a

generalization has been made between a case involving the ring concentrator and a case involving

the gateway; both cases share the same Failure Mode and Failure Correction Procedure. By

generalizing across all cases, FANSYS is capable of processing generalized questions and also

returning generalized answers. Morever, FANSYS may also discover similarities not obvious to

humans reading the same cases.

96

I -Ca. I
Indices ICo_po_t I Mod_ - I

_ [M-Generalization.2
I N0rms'.M_ - Sm,n_No-Ouq_

I I

_ow OWl

1I-M-GW.ll
Figure 6.6

GI hierarchy after adding a ring concentrator and gateway case to memory. The generalization
MOPs are created to norms holding information common to both cases. The cases themselves are

indexed by their differences. In this example, only the failed component is shown. Other indices
may be created for the detection procedure, other correction procedures, etc.

An advantage of this indexing scheme is that memory is self-organizing. Cases are

automatically added to memory such that similar cases are grouped together yet still separated by

their differences. Furthermore, cases are indexed by all attributes which compose the case. This

allows cases to be retrieved based upon any related aspect of the case rather than mere surface

features or predefined keywords. Psychologists refer to this as "deep learning." Furthermore,

these indices may be traversed directly, resulting in fast retrieval. Finally, the hierarchical

memory structure allows generalizations to be built across all similar cases.

A potential pitfall of this memory scheme is the problem of exponential explosion. As

cases with more features are added to the hierarchy, the number of indices created grows

exponentially. This was not a problem in the existing implementation of FANSYS since the pre-

determined selection of good and bad indices resulted in a streamlined memory representation.

However, this would become a serious problem if a large number of cases were added to the

system. A solution to this problem is described by Kolodner in her work with long-term memory

(Kolodner, 1983). Her solution controls exponential growth by making generalizations. If a

MOP indexes a majority of the same cases that are also indexed by its parent, then this MOP is

simply removed, and its norms added to the norms of the parent. This eliminates an entire

subtree of the hierarchy, effectively controlling the number of MOPs and indices.

Implementation techniques could also be used to cut down on memory costs. The current

representation uses expanded lists within slots, indices, and norms. Many of these lists are

identical, particularly indices. The same index value may be used in many different indices within

many different MOPs. If only one copy of each expanded index is stored and pointers are used

97

to referencethisdefinitionin lieu of the expandeddefinition,then therewould bea largesavings
in theamountof occupiedmemory.

6.5MemoryRetrievalProcess

Thebasicretrievalprocessis simplifiedoncea memory hierarchy has been mating using

the algorithm previously described in section 6.5. First, a query must be presented to the system.

A query consists of given data (variables whose values are provided), and requested data

(variables whose values are unknown.) The value of the requested data is what the user would

like to know. The given data simply consists of a set of attribute/value pairs, and the requested

data an attribute without a value. When FANSYS is provided with a query consisting of attribute

and value pairs, GI indices are compared to these attributes and values, and matching indices are

traversed. Any instances which are reached by the traversal process are returned. Based upon

the structures formed by the memory creation process, all indices which point to instances are

features of the instances. Since only indices which match the search query are traversed during

retrieval, all instances that are retrieved must be relevant to the search query and these instances

are accessible without enumeration of indices. Kolodner discusses the benefits of this approach in

her work on reconstructive memory (Kolodner, 1983).

The current implementation of FANSYS traverses matching indices in a depth-fn'st

manner. The depth-f'Lrst search is not performed among all indices, but only indices which match

the input. This drastically reduces the number of nodes which must be searched, making retrieval

very fast. In effect, the attribute/value indices prevent the enumeration of indices and instead

allows indices to be content-addressable. This is a desirable property, particularly when a large

number of cases need to be represented in memory. On average, the retrieval time will remain

constant with respect to the number of cases which are added to memory. Consequently,

retrieval time will not suffer when scaling up to large knowledge bases.

Retrieval is also facilitated by the rich indexing scheme. Each case is indexed by all

features of the case. This allows case retrieval based upon any distinguishing features. For

example, many hierarchical systems may index a case about the ring concentrator only under the

category of ring concentrators. This works fine as long as these cases are retrieved in the context

of ring concentrators. However, if one wants to retrieve these cases based upon other features

(such as the failure-detection method, the failure-mode, etc.) then retrieval is much more difficult

because the system has to figure out that the ring concentrator index applies to the new query. In

FANSYS, each case is indexed by all features of the case, and the problem of finding appropriate

indices is avoided.

Before any indices may be traversed, a suitable entry-point in the parsing hierarchy must

be selected where search can begin. A suitable entry-point would be a MOP which subsumes all

of the data given in the question. The motivation for choosing such a MOP is that the answer is

probably indexed somewhere under this MOP if attributes of the query and the requested
information are also indexed under this MOP. While this may not always be true, this assumption

98

doesprovidea goodplaceto beginsearch.As anexample,if thegoalof thesystemis to retrieve
anentirecase,searchwill typicallybeginat M-CASE,theMOPwhichorganizesall cases.On the
otherhand,if the goalof thesystemis to retrieveanorbital replacementunit, thenM-ORU, the
MOPwhichorganizesall ORU's,isa logicalplaceto beginsearch.

The strategyusedin FANSYS to selectthe entry point is to use the MOP which is an
abstractionof all dataprovided in the query. This processbeginsby startingat the MOPs
representingtherequesteddata. If oneof theseMOPsisanabstractionof the givendataandthe
requesteddata, then that MOP is usedastheentry point. If no MOPsorganizeall the known
data, thenthe processis repeatedwith the immediateabstractionsof the MOPscomparedin the
previousstep. The In'stMOP which organizesall dataprovidedin the questionis usedasthe
entry-point. If no entry-pointis found, the entireprocessis repeatedstarting from the MOPs
representingthegivendata.ThisprocedurefindsthemostspecificMOP whichalsosubsumesthe
givenandrequesteddatain abottom-upfashion. Note that thisentireprocessis computedusing
theISA andSlot-Fillerhierarchy,nottheGI hierarchy.

Oncetheentrypoint hasbeendetermined,theGI indiceswhichmatchthe input queryare
traversedandall instancesfoundarereturned.Thebasicretrievalalgorithmis outlinedbelow:

0) Supplied a list of requested items and given items:

1) Find an appropriate entry point to begin searching.

This is the most specific MOP which is an abstraction

of the given and requested data. Find this MOP searching

from the bottom-up beginning at the MOPs representing

the requested or the given data.

2) Try direct retrieval
Traverse all indices where the attribute/value match

an attribute/value of the query (the given data).

If a generalization is reached, repeat the process

starting at the new MOP (go back to step 2).
If an instance is reached, save it.

3) Compare all retrieved cases to the input query, and

return those which match 100% or within some user-

specified percentage.

As an example of this process, consider the query, "What is

procecedure for the gateway when the failure mode is loss of output - failure to start?"

annotated memory search and retrieval trace for this query is shown below:

Question: What is the tailure correction procedure for the gateway when the failure mode
is loss of output - failure to start?

the failure correction

An

Given Data:

Requested Data:

(MODE M-STARTUP-NO-OUTPUT)
(FAILED-COMPONENT M-GW)
(M-FAILURE-CORRECTION)

99

Memory search and retrieval is first given the attributes and values representing the

question. In this example, the user is asking for the failure correction procedure (M-FAILURE-
CORRECTION) where the mode is loss of output - failure to start (M-STARTUP-NO-

OUTPUT) and the failed component is the gateway (M-GW). The parsing step is not shown

here.

Searching bottom-up for Entry-MOP based on requested:
Entry-MOP=M-CASE

The system has found an Entry-MOP by searching bottom-up from the requested data (M-

FAILURE-CORRECTION). The most specific MOP which subsumes M-FAILURE-

CORRECTION, M-GW, and M-STARTUP-NO-OUTPUT) is M-CASE. The algorithm can now

begin by searching for GI indices from M-CASE which match the query.

Performing Direct Search. Indices:
((MODE M-STARTUP-NO-OUTPUT)

(FAILED-COMPONENT M-GW))
Current MOP: M-CASE

Input matches indices to: (COMP.2499 COMP.2982)

By traversing the index MODE=M-STARTUP-NO-OUTPUT from M-Case, MOP

COMP.2499 can be accessed. This MOP generalizes across all cases where the Mode is Startup-

No-Output. The index FAILED-COMPONENT=M-GW leads to MOP COMP.2982. This MOP

generalizes across all cases where the Failed Component is the

Gateway.

Current MOP: COMP.2499
Input matches indices to: (I-M-GW.1)

Current MOP: I-M-GW.1
Current MOP: COMP.2982

Input matches indices to: (I-M-GW.1)
Found: (M-CASE COMP.2499 COMP.2982 I-M-GW.1)

The traversal process is repeated from each sub-MOP of M-CASE. Both paths lead to

the same instance, I-M-GW. 1, which is the fu'st gateway case. One path goes from M-CASE to

COMP.2499 to I-M-GW.1 by traversing the index MODE-M-STARTUP-NO-OUTPUT from M-

CASE to COMP.2499, and then the index FAILED-COMPONENT=M-GW from COMP.2499

to I-M-GW. 1. The other path traverses a failed component index fast, and then the mode index

second to access the case. Note that although the multiple paths to an instance may seem

redundant, this indexing scheme allows generalizations to be built across components, failure

modes, failure correction procedures, etc. The traversal path for this example is depicted

graphically in figure 6.7. Only the paths which are actually traversed are shown; all other indices

are not considered since the attributes and values do not match those provided in the query.

After traversal has finished, all instances which completely match the input are returned

and the portions of the case which match the requested data are generated in English.

Percent Match of Values to Query: ((M-CASE 0) (COMP.2499 0) (COMP.2982) (I-M-GW.1 1))

Picking out those that match 100%
Results of Direct Search: (I-M-GW.1)

100

[II

[21

SHORT TERM CORRECTION PROCEDURE : THE SYSTEM
MANAGEMENT SELECTS A BACKUP GATEWAY TO REPLACE
THE GATEWAY FROM A LOOK-UP TABLE MAINTAINED WITHIN
THE DMS. THE SYSTEM MANAGEMENT POWERS DOWN THE
GATEWAY. THE SYSTEM MANAGEMENT POWERS UP THE
BACKUP GATEWAY. CORRECTION PROCEDURE :THE SYSTEM
MANAGEMENT LOGICALLY DISCONNECTS THE GATEWAY FROM
THE DMS NETWORK. THE SYSTEM MANAGEMENT LOGICALLY
CONNECTS THE BACKUP GATEWAY TO THE DMS NETWORK.

LONG TERM CORRECTION PROCEDURE : THE CREW PHYSICALLY
DISCONNECTS THE GATEWAY FROM THE DMS NETWORK. THE
CREW PHYSICALLY CONNECTS THE BACKUP GATEWAY TO
THE DMS NETWORK. THE CREW LOGICALLY DISCONNECTS THE
GATEWAY FROM THE DMS NETWORK. THE CREW LOGICALLY
CONNECTS THE BACKUP GATEWAY TO THE DMS NETWORK.

[M-Rootl

I
M-Case

Indices Mode Component

[I ii I

I comp.2499 I
Norn-_:Mode - Stamp-No-Output]

C_het geael'_tUzadaa of all ¢_m I
d Modc-S_lPNo-Ow*put J

Indices I Failed Component [...]

I-M-GW.1

I °,°]

_ Gateway

I C0MP.2982 I
Norms:Failed-Component,,M-GW]

Od_ gencndlzadca of dl ¢_ I

I
indices I Fdlm M°dc l "'"]

I
Figure 6.7

Travcrsal paths for exmnple query given Failure-Mode,=Startup-No-Output _md Failed-

Componcnt=M-GW starting from Entry MOP=M-CASE

A second trace is shown below. In this example, the user is asking FANSYS to specify

details of the lookup-backup correction procedure:

Question: What are the correction steps for the lookup backup procedure when the
failed component is the standard data processor?.

Given Data: (FAILURE-CORRECTION M-LOOKUP-BACKUP)
(FAILED-COMPONENT M-SDP)

Requested Data: (M-CORRECTION-AND-GROUP)

101

Searching bottom-upforEntry-MOPbased onrequested:
M-OR-GROUP
M-AND-GROUP
NoMOPfou_ whichsubsumesgivendata

Starting from the requested data, a MOP was not found which subsumes all data provided

in the question. By performing another search from the given data, a suitable MOP is found. This
MOP turns out to be M-LOOKUP-BACKUP, one of the MOPs actually specified by the user. As

a result, there will be no indices of FAILURE-CORRECTION=M-LOOKUP-BACKUP starting

from M-LOOKUP-BACKUP, but there will be indices for the failed component.

Searching bottom-up for Entry-MOP based on given:
Entry MOP=M-LOOKUP-BACKUP

Performing Direct Search. Indices:
(FAILURE-CORRECTION M-LOOKUP-BACKUP)
(FAILED-COMPONENT M-SDP)

Current MOP: M-LOOKUP-BACKUP
Input matches indices to: (I-M-LOOKUP-BACKUP.3061)

Current MOP: I-M-LOOKUP-BACKUP.3061

Found: (M-LOOKUP-BACKUP I-M-LOOKUP-BACKUP.3061)
Percent Match of Values to Query: ((M-LOOKUP-BACKUP 0) (I-M-LOOKUP-BACKUP.3061 1))

Picking out those that match 100%

Results of Direct Search: (I-M-LOOKUP-BACKUP.3061)

[1] THE SYSTEM MANAGEMENT SELECTS A BACKUP STANDARD
DATA PROCESSOR TO REPLACE THE STANDARD DATA PROCESSOR
FROM A LOOK-UP TABLE MAINTAINED WITHIN THE DMS. THE SYSTEM
MANAGEMENT POWERS DOWN THE STANDARD DATA PROCESSOR.
THE SYSTEM MANAGEMENT POWERS UP THE BACKUP STANDARD DATA
PROCESSOR. CORRECTION PROCEDURE : THE SYSTEM MANAGEMENT
LOGICALLY DISCONNECTS THE STANDARD DATA PROCESSOR FROM
THE DMS NETWORK. THE SYSTEM MANAGEMENT LOGICALLY CONNECTS
THE BACKUP STANDARD DATA PROCESSOR TO THE DMS NETWORK.

In this example, we are not retrieving an entire failure case instance, but an individual

instance of the lookup-backup failure correction procedure. As illustrated in figure 6.8, this

instance is indexed directly under M-LOOKUP-BACKUP by traversing only a single index. By

finding an appropriate entry-point MOP to begin search, the number of MOPs which need to be

examined can be drastically reduced.

102

I M-Lookup-Backup I

I _

I I-M-Lookup-Backup.30611

Figure 6.8

Traversal path for example query given Failed-Component=Standard Data Processor with the Entry

MOP=M-Lookup-Backup

The basic retrieval algorithm works well when the QA module is given enough

information to traverse indices all the way clown to the instances. However, the system should

also be capable of handling more difficult questions where the input may not give enough

information to access a specific ease. One solution is to elaborate on the input query. In general,

elaboration is the process of generating related items to use for search based upon a particular

input query. For example, when asked to name all 50 states of the United States, many people

will elaborate on the question by thinking of states they have visited, states where friends or

relatives live, postal abbreviations, or perhaps by visualizing a map and mentally traversing the

states. None of these retrieval techniques were directly specified by the input query, but were

conjured up by searching for a context where an appropriate ease may be found.

While Kolodner specifies a number of elaboration techniques in her work on memory

retrieval (Kolodner, 1983), the cun'ent implementation of FANSYS uses only a set of simple

elaboration strategies. The In-st strategy removes some of the constraints of search by allowing all

indices to be traversed which have the same attributes as the requested information. This amounts

to adding to the search query all possible requested items. By allowing more indices to be

traversed, there is a greated chance of retrieving an instance. Furthermore, the new indices which

are traversed are related to the input question, so we are still restricting search to relevant

portions of memory. As an example, if we are searching for a ring concentrator, then all ring
concentrator indices will be traversed even if the value doesn't match an attribute/value given in

the query. This is often just what is needed to retrieve cases, since the requested item is typically

not known and hence not present in the query. This elaboration technique is called elaborating

on the requested information.

If elaborating on the requested information still fails to retrieve cases, then the search can

be broadened by allowing even more indices to be traversed. This is accomplished in FANSYS

by retrieving the attributes which are contained in the elaborations slot of the each MOP
traversed. The information in the elaborations slot specifies additional attributes and other MOPs

where search may be conducted. Any indices which have these attributes are allowed to be

traversed, even if the value of the index does not match attribute/values of the query. Currently,

103

the elaborationsare pre-def'medin FANSYS to include the failure-mode, failure-detection
procedures,andfailurecorrectionprocedures.A topic for futurework would includemethodsof
learningappropriateMOPsandattributesfor elaboration.

Finally, if the abovetwo elaborationstrategiesstill fail to retrieve any applicablecases,
thena depth-f'trst-searchof the entirememorycanbeemployed,retrievingall cases. Eachcase
canthenbematchedwith thequery,andthemostrelevantreturned. With a largememory,this
will bea time-consumingprocessandshouldbedoneonly asa last resort. In our experiments,a
completesearchof memorywasnevernecessary.

Theretrievalprocess,accountingfor elaboration,is summarizedbelow:

1)Try basicretrieval
2) If nomatchesfound,allowelaborationon therequested

data. Run the retrieval algorithm again, but allow traversal

of any indices matching the requested data.

3) If no matches are found, allow elaboration on all attributes
contained in the elaborations slot of each MOP traversed.

Run the retrieval algorithm again, but allow traversal of any

indices matching these new attributes. Also run the

retrieval algorithm starting at all MOPs specified in the

elaborations slot.

4) If no matches are found, perform a depth-f'trst-search and

retrieve all instances.

5) Compare all retrieved cases to the input query, and
return those which match 100% or within some user-

supplied percentage. This could also be modified

to return the highest N matches.

An example of retrieval with elaboration is shown in the trace below. In this example, the

user is asking for the failed component when the heartbeat detection procedure is used. The only

information given in the query is the detection procedure. This is not enough information to
access cases. FANSYS will have to elaborate and traverse indices not specified in the question.

Question: What is the failed component when the failure detection procedure
is the heartbeat detection procedure?

Given Data: (FAILURE-DETECTION M-HEARTBEAT-DETECTION)

Requested Data: (M-ORU)

Searching bottom-up for Entry-MOP based on requested:
Entry-MOP=M-CASE

Performing Direct Search. Indices: (DETECTION M-HEARTBEAT-DETECTION)
Current MOP: M-CASE

Input matches indices to: (COMP.4325)
Current MOP: COMP.4325
Found: NIL
Values: NIL

104

COMP.4325 is the MOP which generalizes across all heartbeat detection procedures; i.e.,

it is accessed through the index DETECTION=HEARTBEAT-DETECTION.

Picking out those that match 100%
Results of Direct Search: NIL
None found.

No cases are retrieved since the single index of DETECTION=HEARTBEAT-

DETECTION is not sufficient to access a case. Consequently, the system gets "stuck" at

COMP.4325. The traversal is depicted in figure 6.9 in the encircled area. FANSYS will next

lessen the search constraints by allowing traversal of any indices which have an attribute of

FAILED-COMPONENT. This is accomplished by performing the search again with a new

wildcard added to the search query.

Elaborating using wildcard for requested information.

* matches with anything. Indices:
(DETECTION M-HEARTBEAT-DETECTION)
(FAILED-COMPONENT *)

Performing Search. Entry MOP=M-CASE
Current MOP: M-CASE

Input matches indices to: (COM P.4199 COM P.3569 COM P.2992 COM P.1321 COM P.4325)
Current MOP:COMP.3569
Current MOP: COMP.1321
Current MOP: COMP.4199

Input matches indices to: (I-M-SDP.2)
Current MOP: I-M-SDP.2
Current MOP: COMP.2982

Input matches indices to: (I-M-GW.2)
Current MOP: I-M-GW.2

COMP.3569 and COMP.1321 respectively organize cases for the time generation unit and

the ring concentrator. Since the query has been expanded to traverse any index with a FAILED-
COMPONENT both of these MOPs will be examined. However, none of these MOPs have

indices which match the query, so traversal halts. However, COMP.4199 organizes all cases for

the standard data processor. This MOP does have indices which match the input data of

DETECTION=M-HEARTBEAT-DETECTION which lead to the instance I-M-SDP.2.

Similarly, the MOP which organizes all gateway cases also leads to an instance, I-M-GW.2.

Current MOP: COMP.4325
Input matches indices to: (I-M-GW.2 I-M-SDP.2)

Current MOP: I-M-GW.2
Current MOP: I-M-SDP.2

Before elaboration, FANSYS was only able to traverse to COMP.4325, the generalization

for HEARTBEAT-DETECTION. However, the system is now capable of reaching instances due

to the expanded search query. All failed-component indices are traversed, leading to the GW and

105

SDP instancespreviouslyfound.
generatedfrom theretrievedcases.
figure6.9.

Theseinstancesare returnedand the requestedinformation
Thepathstraversedbeforeandafterelaborationareshownin

Found: (COMP.4325 I-M-GW.2 M-CASE COMP.4199 COMP.2982 I-M-SDP.2)
Percent Match of Values to Query:

((COMP.4325 0) (I-M-GW.2 1) (M-CASE 0) (COMP.4199 0)
(COMP.2982 0) (I-M-SDP.2 1))

Picking out those that match 100%
Results of elaboration: (I-M-GW.2 I-M-SDP.2)

[1] GATEWAY
[2] STANDARD DATA PROCESSOR

r
' I_"" / \ \\
I c°MP'1321r sDP/" _o.,,... \",,.=,,_,t_==io* .'_
I COMp.4__82 ill COM_432S I

I ,_,,ra_c_sw- II ,_:=r_dc_-_ III ".=.... ==. I I
I,.,,.i .--J/
. \!.,/ - . \

Figure 6.9

Traversal path for example query with elaboration given Failure-Detection=Heartbeat Detection
with the Entry MOP=M-Case. The encircled area represents MOPs traversed before elaboration.
After elaboration all pathsshownare traversed.

A final annotated trace depicting a case where FANSYS uses a last resort strategy of

depth-fh'st search along all unspecified indices is shown below. In this example, the system is

given a single failure mode, failure during operation with erroneous output, and is asked to return
all of the failure causes associated with this mode. The given information and requested

information alone are not enough to reach any specific instances since many cases share the same

causes when the mode is erroneous output. Consequently, FANSYS must expand upon

unspecified indices to access cases.

Question: What is the failure cause when the failure mode is failure during
operation - erroneous output?

Given Data: (FAILURE-MODE M-OPERATIONAL-ERRONEOUS-OUTPUT)
Requested Data: (M-FAILURE-CAUSE)

106

Searching bottom-up for Entry-MOP based on requested:
Entry-MOP=M-CASE

Performing Direct Search. Indices: ((MODE M-OPERATIONAL-ERRONEOUS-OUTPUT))

Current MOP: M-CASE

Input matches indices to: (COMP.1902)
Found: NIL
Values: NIL
Picking out those that match 100%
Results of Direct Search: NIL
None found.

Direct search traverses the single index MODE=M-OPERATIONAL-ERRONEOUS-

OUTPUT from M-CASE to COMP.1902 and then stops. Since no instances are reached,

elaboration using the requested information is employed, allowing FANSYS to traverse any

CAUSE indices.

Elaborating using requested information.
* matches with anything. Indices: (MODE M-OPERATIONAL-ERRONEOUS-OUTPUT)

(CAUSE *)
Performing Search. Entry MOP=M-CASE
Current MOP: M-CASE
Input matches indices to: (COMP.1326 COMP.4376 COMP.1325 COMP.1324

COMP.1902 COMP.1323 COMP.1322)

Current MOP: COMP.1326
Current MOP: COMP.4376

Current MOP: COMP.1323
Input matches indices to: (I-M-GW.3)
Current MOP: I-M-GW.3
Current MOP: COMP.1322
Input matches indices to: (I-M-TGU.3)
Current MOP: I-M-TGU.3
Found: (COMP.1326 COMP.1325 COMP.1324 COMP.1323 COMP.1322 I-M-GW.3 M-CASE

COMP.4376 I-M-TGU.3)
Values: ((COMP.1326 0) (COMP.1325 0) (COMP.1324 0) (COMP.1323 0) (COMP.1322 0)

(I-M-GW.3 1) (M-CASE 0) (COMP.4376 0) (I-M-TGU.3 1))
Picking out those that match 100%
Results of elaboration: (I-M-GW.3 I-M-TGU.3)

[1] PIECE-PART FAILURES
[2] ERRONEOUS INPUT

Found good match. Elaborate further anyway? (Y/n) Y

After allowing traversal of all CAUSE indices, additional MOPs are traversed and two

instances are returned. These two instances are specified uniquely by the failure causes of Piece-

Part Failures and Erroneous Input. However, additional cases may exist which are not retrieved

by the f'trst elaboration strategy. To retrieve these cases, FANSYS can elaborate upon all

unspecified slots, illustrated in the final section of the trace below:

107

Elaborating on unspecified entry slots...
Indices: ((FAILED-COMPONENT *) (MODE M-OPERATIONAL-ERRONEOUS-OUTPUT)

(CAUSE *) (DETECTION *) (CORRECTION *) (EFFECT *))
Performing Search. Entry MOP=M-CASE
Current MOP: M-CASE
Input matches indices to: (COMP.3569 COMP.2499 ... COMP.1902)
Current MOP: COMP.3569

Input matches indices to: (I-M-SDP.1 I-M-SDP.2 I-M-SDP.3)
Current MOP: I-M-SDP.1
Current MOP: I-M-SDP.2
Current MOP: I-M-SDP.3
Current MOP: COMP.2499
Input matches indices to: (I-M-GW.1 I-M-GW.2 I-M-GW.3)
oo°o

Found: (COMP.3569 I-M-RC.3 I-M-TGU.1 COMP.4376 ...)
Values: ((COMP.3569 0) (I-M-RC.3 1) (I-M-TGU.1 2591/2940) (COMP.4376 0) ...)

Picking out those that match 100%
Results of secondary elaboration: (I-M-SDP.3 I-M-GW.3 I-M-RC.3 I-M-TGU.3 I-M-TGU.3)

[1] PIECE-PART FAILURES
[2] ERRONEOUS INPUT
[3] CONTAMINATION
[4] TEMPERATURE (HIGH OR LOW)
[5] MECHANICAL SHOCK
[6] THERMAL SHOCK

In the final section of the trace, redundant sections have been removed for brevity. Only

the first matching index from M-CASE to COMP.3569, is expanded. This index leads to all cases

involving standard data processors. The other indices are traversed similarly. By allowing

traversal of unspecified indices, FANSYS is able to retrieve all matching cases. In this example,

additional failure causes are found which were not returned from elaboration using only the

requested information. However, a large number of indices are traversed which do not lead to

relevant cases. For example, the trace indicates that I-M-SDP.1 and I-M-SDP.2 are examined.

These cases do not match the search criteria since the failure mode is not erroneous-output, and

are subsequently not returned. Traversal to these irrelevant cases is time-consuming and

inefficient. Although only a few general questions require this last resort depth-first search

strategy for a complete answer, future work for FANSYS includes the elimination of this last

resort strategy and the inclusion of alternate context search and more intelligent elaboration

strategies.

108

7. User Interface

The prototype version of FANSYS was primarily designed to experiment with new

paradigms in knowledge representation and the modeling of conceptual processes. As a result,

user interface issues have received secondary priority. An implementation version of FANSYS

would certainly require an additional emphasis placed upon the user interface. User surveys, a

design rationale, task analysis, and user testing are all important phases of interface design which

needs to be performed. (Blattner, 1992; Gentner & Grudin, 1990; MacLean et. al, 1991).

Results from any of these phases can significantly affect the development of the final system.

While the user interface employed in FANSYS is currently in the preliminary stages of

development, it does address a number of design issues. First, FANSYS utilizes the X window

system through the GARNET UIMS developed at Carnegie Mellon University (Myers, 1991).

This allows for integration with other unix-based applications and provides a foundation for future

development. Second, an emphasis has been made to simplify the question/answering sessions

since this is anticipated to be the most frequently used aspect of the system. This emphasis is

manifested through the use of point-and-click buttons for input and a natural language generator

for output. Third, the capability to parse questions in natural language has been provided.

Finally, a graphical browsing tool has been developed to aid knowledge engineers in examining

and modifying memory.

The user interface of FANSYS is composed of the desktop shown in figure 7.1. There

are two main windows. The top window is a trace window which maintains a record of the

processes used by FANSYS during text comprehension and question answering. This window is

used by FANSYS for output of technical information only. The bottom window is an

input/output window which displays input case descriptions, input questions, and answers to these

questions. This is the primary window; users unfamiliar with the underlying model of FANSYS

may elect to hide the trace window and work only with the input/output window. The overall

control of the program is handled through a button panel located in the lower fight hand corner of

the screen. This panel allows the user to enter a search query, inspect memory with a graphical

browser, get help about the system, or exit the system.

The first action that must be performed with the user interface is to parse textual

descriptions of cases to build up the knowledge base, as described in section 5. As these case

descriptions are parsed, the trace window displays the processes involved in understanding the

input text. A sample of this process is shown in figure 7.2, which shows the behavior of the

system as it begins to parse the first ring concentrator case.

Once the knowledge base has been constructed, question answering may begin. In a

typical session the cases will be parsed offline and the knowledge base stored. A user may then

start FANSYS directly in question/answering mode. Queries are given to the system in either of

two ways: constructing a query through a series of point-and-click buttons, or entering a query

via natural language. The point-and-click buttons are simple enough for a novice to use and also

gives the user an idea of what types of questions may be asked. Alternately, the natural language

interface allows for more types of queries to be created and creates a context in which dialogue is

possible.

109

0 0

The point-and-click interface is invoked by clicking on the button labeled "Enter Search

Query." This will bring up a sequence of button menus which will allow the user to create a

query. This query is constructed in terms of "given information" and "requested information".

For example, to learn what the failure cause may be for the ring concentrator when the failure

mode is startup-no-output, the user will click on the button "Ring Concentrator" to indicate the

component which has failed, and "Startup-No-Output" to indicate the failure mode. Together,

this data comprises the given information. Finally, the user will click on the button "Failure

Cause" to indicate the requested information. Examples of the button menus are shown in figures

7.3-7.9.

Figure 7.3 is the f'u'st pop-up window which appears after the user has clicked on the

"Enter Search Query" button. This window consists of a number of radio-style buttons which

allows the user to select the unknown variables (i.e., the requested data) in the query. In this

example, the user is asking the system to determine the failure mode and the failure cause. These

menus give the user the opportunity to select or deselect buttons, so any action is easily "undone."

When the user is satisfied with the selected choices, the "Continue" button brings up the next

menu which prompts the user to enter the given information.

The next menu shown in figure 7.4 prompts the user to enter the component which has

failed. If the component is now known, the user may click on the button labeled "Unknown."

This menu is always presented to the user since it is anticipated that most queries will contain a

known component which has failed. Currently, FANSYS allows the user to select only a single

failed component. Upon selecting a component, the menu shown in figure 7.5 appears.

Figure 7.5 depicts a controlling menu which allows the user to give any further

information about the search query which may be known. If the failure mode is known, then the

user would click upon the "Failure Mode" button. Similarly, if the failure causes are known, then

the user would click upon the "Failure Cause" button. Each button will bring up a separate menu

allowing the user to specify further data. These menus are shown in figures 7.6-7.9. Note that

when only one choice is appropriate, the interface only allows one choice to be made. For

example, the user may not specify a query which has two different failure modes since no case has

two modes (only an "and" of the input is currently supported; attributes may not yet be "or'd"

together). When multiple choices are appropriate, as in specifying the failure causes of figure

7.7, a radio-style button panel is presented to allow many choices to be made. After the user has

specified further information, the menu shown in figure 7.5 will re-appear, allowing the user to

specify even more information or start the search.

112

Select the Requested Items

Failure Mode_

Failure Cause_

Failure Effect_

Failure Detection Procedure_

Failure Correction Procedure_

*Detection Steps_

*Correction Steps_

Figure 7.3

Input of search query via point-and-click buttons. This menu allows the user to toggle the
items which FANSYS should relieve.

Select the Failed Component

Figure 7.4

Input of search query via point-and-click buttons. This menu prompts the user to select the
component which has failed, or "unknown" if the failed device is not known.

Click on the information given in the question

Failure Mode... _

Failure Cause... _

Failure Detection..._

Failure Correction..._

Figure 7.5

Input of search query via point-and-click buttons. This menu allows the user to give any
additional information which may be known. After the information has been ¢nte_a'cd, the
"Start Search" button instructs FANSYS to begin searching memory for matching cases.

Select the Failure Mode

Figm'¢ 7.6

Input of search query via point-and-click buttons. This menu prompts the user to give the
failure mode. Upon s¢le,cting a mode, control returns to the menu shown in figure 7.5.

Select the Failure Cause

Thermal Shock_

Piece-part Failures_

Contamination_

Temperature (High or Low)

Mechanical Shock_

Erroneous Input_

Figure 7.7

Input of search query via point-and-click buttons. This menu prompts the user to give the

failure cause. Upon selecting causes, control returns to the menu shown in figure 7.5.

Select Failure Detection

Figure 7.8

Input of search query via point-and-click buttons. This menu prompts the user to give the
failure detection procedure. Upon selecting a detection procexlure, control returns to the

menu shown in figure 7.5.

Select Failure Correction

Figure 7.9

Input of search query via point-and-click buttons. This menu prompts the user to give the
failure correction procedure. Upon selecting a correction procedure, control returns to the

menu shown in figure 7.5.

Once all the information has been given to the system, the button "Start Search" instructs

FANSYS to search memory for relevant cases which conform to the query using the retrieval

strategies discussed in section 6. A trace of the processing steps is shown in the top trace

window, while the query and answer is shown in the bottom question/answer window. Figure

7.1 shows the final result of a sample query where the user has asked FANSYS to determine the

detection procedure when the failure cause is thermal shock and contamination, the failure mode

is loss of output - failure during operation, and the failed component is the standard data

processor. The detection procedure corresponding to the case matching the query is output in the

bottom question/answer window via a natural language generator. After cases have been

retrieved, the user will be asked if the system should stop or continue searching for more cases

which may match the input query.

In addition to using buttons to create a search query, a button also exists to give the user

help. This button brings up a scrollable window which describes the overall system, how to use

the interface to answer questions, and how queries should be constructed. Future versions of

FANSYS will incorporate context-sensitive help. A sample of the user help window is shown in

figure 7.10. This particular snapshot shows the format for posing questions to the system via

natural language through the question shell.

The question shell is an alternative method of creating queries by allowing users to enter

questions in English. As described in section 5, questions are constrained by the format in which

they may be posed. Refer to figure 7.10 for a description of the question format enforced by the

system. In this figure, items within parentheses denote variables, where several different values

may fill that variable. For example, the "given-item" may be "ring concentrator", "gateway", or

any other component which may fail. The brackets denote optional patterns which may repeat.

For example, a user may ask "What is the failure mode and the failure cause..." to ask the system

to return many different answers.

Once a question has been entered, it is processed in order to convert punctuation into the

appropriate lexical symbols used by FANSYS (for example, a "." becomes "*PERIOD*"). The

sentence is then passed to the parser, which processes it just like any other piece of text (e.g., a

case description). Once the question MOP corresponding to the query has been built as described

in section 5, the query is constructed and is then passed to the memory search and retrieval

module. The retrieved answers are generated in English, just as with the X-Windows interface.

An important point worth noting is that the query that is generated is identical to that generated

by the X-Windows interface. The only difference is the manner in which the information within

the query is specified -- via a point and click mechanism, or via natural language. For instance,

figure 7.11 shows the input/output behavior of FANSYS when a question is being processed after

it has been typed into the question shell. Cl'his question is the same question used in section 5.3 to

illustrate the input/output behavior of FANSYS when parsing a question.) The top window is a

trace of the parsing process for the question, while the bottom window shows the results of the

query after the memory search module has retrieved the answer.

120

i
t

,--4

f,.I

"Cl

,-..-, _

•,q .,-4

.,.
_1 r-I

4J_
0

I_ 114
-rl

"cl ,_

f,4
_q..!

4J 0

,_ "el
i-I

0
m 0

m

.rl
m_

0 (D
•rl _1

l/l

.rl

£q

.ri

"-_ "Cl

_4J

[1I "---" -rl la
,--, q-i _

•.-.. ,._ r.J r...

0 "---" ..--. _

,--, 114 "ri .0
+-_ P. "rl 40

rJ m

•,q m _

"el

..p

43

4J
el ..iJ

,._ _a
43

I-I
@

0

]_

_g
0"_

0

m
0

_°

_c

°_ _

0

. ,,...i

e_

°_

• 0

o_

011

]

I_,'E

The final component of the user interface is a graphical browser called the Memory

Inspector. The Inspector allows a knowledge engineer to inspect and modify memory. The user

may click on boxes which represent MOPs. The boxes show the contents of each MOP and the

indices connected to other MOPs. By simply clicking on MOPs and indices, memory can be

traversed and the hierarchy visually inspected. A sample of the Inspector is shown in figure 7.12.

This figure shows the MOP representing M-CASE in the upper-left comer. The user may then

choose to expand on any slots or fillers of M-CASE. Clicking upon "SPECS" brings up all

specializations of M-CASE; i.e., all of the cases in memory. These are shown in the scrollable

window below the MOP of M-CASE. The user may further expand upon one of these eases by

simply clicking on it. In the figure, I-M-RC. 1, the first ring concentrator case, has been expanded

and its slots shown in the upper-right comer. In addition to providing a convenient way to

examine and visualize memory, any of these values may also be modified by clicking on them and

typing in new values.

123

0

M H

 i!il!
E

ffl

m

I-II-II-II_MNI-_I_I-_

¢.)

8. Current Status

All of the material discussed in the previous sections has been implemented in a prototype

version of FANSYS developed at the U.C. Davis AI lab on Sun workstations. Although only a

prototype, a significant effort has been spent in implementation. The source code, written in the

CMU Common Lisp programming language, occupies approximately 234K of disk space. The

data files used to represent the domain occupies approximately 75K. CMU Common Lisp is a

public domain Common Lisp implementation under development at Carnegie Mellon University

and is available by anonymous FTP from lisp-rtl.slisp.cs.cmu.edu. Although FANSYS was

developed using CMU Common Lisp, the core routines for parsing and memory search/retrieval

will run under any version of Common Lisp (e.g., Kyoto Common Lisp, Ibuki Common Lisp, or

Franz Allegro Common Lisp). However, some of the user interface routines for interprocess

control are dependent upon CMU Common Lisp. The graphical user interface routines require

the GARNET User Interface Management System. GARNET is another public domain product

developed at CMU and is available by anonymous FTP from a.gp.cs.cmu.edu. GARNET requires

the CLX X Library package to be installed on the Lisp platform used.

The current implementation of the parser is capable of reading the In'st ring concentrator

case where the failure mode is loss of output - failure to start. The case text shown in figure 2.1

is an abstraction of the original failure case description. The abstracted case has been further

converted to the format shown in the figure; this conversion allows FANSYS to process

punctuation more easily.

While the current implementation of the parser has only been developed to parse the ring

concentrator case, a total of twelve cases have been hand-coded to test the knowledge

representation and memory search/retrieval schemes. These cases cover the descriptions for the

ring concentrator, gateway, standard data processor, and the time generation unit. To input these

cases, the underlying knowledge to understand the cases is first developed. Next, instantiated

knowledge structures representing the cases are presented to the system. These cases are shown

in Appendix A. FANSYS then instantiates these knowledge structures and creates GI indices to

access the cases for question/answering.

After the twelve cases have been loaded, FANSYS occupies approximately 10 Mb of

memory. The core of CMU Common Lisp and the GARNET and CLX interface code occupies

another 15 Mb, bringing the total memory requirements to 25 Mb. While the memory

requirements are large, little effort has been done to optimize the time and space efficient of the

code. More efficient memory representation implementation, particularly in the GI indices where

redundancy is high, would result in dramatic memory compaction.

125

9. Future Work

The goal of FANSYS has been to design a system capable of integrating knowledge

constructs with processing strategies to comprehend textual input and answer questions in the

domain of failure analysis within the Data Management System of Space Station Freedom. The

prototype system has demonstrated the feasibility and power of the approach described in this

report. However, as work has progressed, many areas have been discovered where FANSYS can

be improved. These areas include the user interface, integration with other tools for fault

management, integrating memory structures used for parsing and retrieval, the scope of the

implementation, investigating the use of parallel machines, machine acquisition of domain-specific

knowledge and search strategies, incorporating model-based and functional-based reasoning

strategies, generating belief inferences, and subjective comprehension and verification of input

text.

9.1 User Interface

The point-and-click buttons of the user interface currently help make the system intuitive

and easy to use. However, the interface has been built upon the system architecture. A

deployable system will need to be based upon the tasks required by the users. This may require

redesigning portions of the interface and the system itself. Furthermore, additional functionality

needs to be designed into the interface so that more complex editing and more flexible question

queries can be posed to FANSYS.

9.2 Integration with Other Tools

Additional flexibility can be obtained by integrating FANSYS with other failure analysis

tools. For example, FANSYS could provide explanations in natural language to users of NASA's

FEAT (Failure Environment and Analysis Tool) (Iverson and Patterson-Hine, 1990; Patterson-

Hine and Iverson, 1990; Stevenson, Miller, and Austin, 1991). FEAT provides excellent

reasoning capabilities for determining the causes and effects of a failure, while FANSYS provides

natural language and the context of a case from which explanations can be based.

9.3 Integration of Memory Structures

Another important area for future work is a closer integration of the knowledge structures

used during parsing and those generated in the GI hierarchy through the generalization process.

Both hierarchies encode the similar knowledge, but in a different fashion, resulting in redundancy

within the system. A more efficient approach would integrate the two memory systems into a

single hierarchy which is self-organizing and also capable of supporting the parsing,

generalization, and retrieval processes.

126

9.4ImplementationScope

Oneof the next stepsfor futurework is to extendthe scopeof the project so that more
casescan be parsed and understood. This will involve additional work in knowledge
representationto encodethe casesfor the consoleand cupola. Further work in knowledge
representationwill alsobenecessaryif a finergranularityof understandingis desired. Continued
work on defining additional lexical patterns,inferencestrategies,and processingMOPs is
necessaryto handleadditionaltextual cases. Currently,the systemencodesapproximately120
lexicalpatternsand a few domainspecificprocessingstrategies,characterizingthe partsof the
domainnecessaryto understandingthef'trstring concentratorcase.More lexical knowledgemust
beaddedto the systemto parsetheremainingcases.Questionansweringsessionscould alsobe
mademoregeneralandlessconstrainedbydef'mingadditionalpatternsto handlenaturallanguage
queriesfrom a user of the system. Additionally, the generatorwould benefit from a more
elaboratedsyntacticalsystemfor specifyingpatternsandfrom betterstrategiesfor choosingwhich
patternsto useduringgeneration.Although lexical and processing knowledge has been encoded
for the fn'st case alone, the mechanisms developed for the first case should prove general enough

to make the parsing of additional cases involve little more than elaboration of lexical and

processing knowledge.

Performance improvements are also possible within FANSYS if its code is optimized.

Throughout the implementation, little effort has been made to generate code which is efficient in

both runtime and memory requirements. The speed of execution during parsing could be

improved by integrating some of the memory search and retrieval techniques. More intelligent

elaboration strategies will also improve the speed of execution during memory retrieval. In

particular, the last resort strategy of depth-first search should be replaced with more intelligent

elaboration strategies. These strategies would require knowledge of the domain to search

alternate areas or concepts within memory that apply to the original query. By integrating the

memory search functionality with the parser, more efficient access and indexing of MOPs during

parsing would be facilitated, speeding up the performance of the parser substantially. F'mally, the

use of a parallel machine would result in a dramatic increase in memory creation and retrieval

speed since many of the traversal paths could then be examined simultaneously.

9.5 Knowledge Acquisition

Self-organization and learning are also extensions that need to be addressed in FANSYS.

Although the GI hierarchy is self-organizing during the creation processes, the processes that

govern memory retrieval are fixed. A significant improvement to FANSYS would include the

capability to learn elaboration strategies as the system is used. As questions are posed and cases

retrieved, the system can be trained as to which cases and procedures relate to each other. When

presented with a general question or an unknown question, FANSYS could rely upon previous

cases for elaboration strategies which may be appropriate.

FANSYS is currently able to read and build the conceptual representation of input text

that describes failure diagnosis and repair in a given flight system. However, FANSYS should

also be able to build a coherent model of (1) the causal relationships that exits among components

of the flight system, (2) the effects and causes of failures in that system, and (3) the procedures

used to deal with those failures. This domain model must be dynamically built as a result of

127

remindings (Schank, 1982) that occur when similar textual inputs are processed. FANSYS should

also account for how cross-contextual remindings occur when reading input descriptions of failure

analysis in different flight systems, and how memory search and retrieval processes must be able

to adapt to memory changes that result from these remindings. To model this reminding process,

FANSYS must organize and maintain failure-analysis memories by using a hierarchical

organization scheme of the type used the OCCAM system (Pazzani, 1988) in addition to the GI

hierarchy.

FANSYS must also be able to handle input text that is not directly dependent on the

knowledge constructs and lexical entries initially encoded in the system. To deal with this

knowledge engineering bottleneck, FANSYS must be able to dynamically acquire and augment its

knowledge during text comprehension. Consequently, the model of text comprehension and

question answering implemented in FANSYS will include explanation-based and case-based

strategies, such as those described in (Kolodner, 1988) and (Schank and Riesbeck, 1989), for

dynamically acquiring and encoding knowledge constructs associated with a given domain or a

given natural language.

9.6 Model and Functional Based Reasoning

Another extension which would increase the power of FANSYS is the addition of model-

based and functional-based reasoning (Hodges, 1989). These techniques allow for an entirely

new level of analysis. In model-based reasoning, the system creates its own model prototype

based on the input data. For example, if the system were given that "component A is connected

to component B via the network", then an internal model of two connected components via a

network would be created. Consequently, the system can then draw inferences and conclusions

based on the model. This type of reasoning would be necessary if the user wanted to know what

would happen if component A were switched with component B. In this case, the system could

switch the components in its model and discover the ensuing results. Similarly, in functional-

based reasoning, conclusions are drawn based upon the functions of various devices. Providing

FANSYS with both types of reasoning will require the development of new memory structures

which accommodate these and the reasoning approaches previously discussed.

9.7 Subjective Comprehension of Input Text and Questions

Comprehension of input text and questions in FANSYS must also be influenced by the

ideological perspective (Carbonell, 1981) that FANSYS may have about diagnosis and repair

procedures in a given domain. That is, FANSYS must attempt to understand descriptions of

failure analysis and relate their conceptual content to its own beliefs and justifications involving

related and/or similar failures. If FANSYS reads descriptions that are inconsistent with its beliefs,

then FANSYS must be able to generate counterarguments as it reads the input text or questions.

In order to account for this process of subjective comprehension, FANSYS must have its own

ideology, as well as strategies for determining inconsistencies between beliefs in long-term

memory and input text, and strategies for selecting counterarguments. These counterargument

strategies should be based on the argument-planning knowledge underlying the taxonomy of

argument units proposed by Alvarado (1990).

128

9.8BeliefInferencesBasedonPastFailureAnalysis

FANSYSmustbeableto answerquestionsaboutcausesandeffectsof failures,andabout
proceduresfor repairingfailures.Answersto thosequestionsmustbe foundby accessingindices
into FANSYS's long-term memory and then traversingmemory links associatedwith those
indices.There are questions,however, that require beliefs to be inferred from beliefs and
justificationsalreadyexisting in memory.For example,considera hypotheticalquestionof the
type: "Would FANSYS agree/disagreewith adviseseekerA over the useof repairprocedureP
when dealingwith failure F?."Here, FANSYS must generateplausiblyheld beliefs,given its
beliefsandjustificationsin possiblyunrelatedfailuresituations.That is, FANSYS mustbeableto
usememoriesfrom a previousfailure situationto aid in understandinghow a repairprocedure
might beusedin a new failuresituation.GettingFANSYS to handlehypotheticalquestionswill
requiremodelingthe processof beliefinferencein relationto modelsof ideologyandlong-term
memoryorganization.

129

10. Conclusions

This technicalreport hasdescribedthedesignandimplementationof FANSYS,a failure-
analysissystemcapableof reading segmentsof manualsdealing with failures on the data
managementsystem (DMS) of NASA's Space Station Freedom, and answeringquestions
regarding such failures. FANSYS includes a case-basedparser and a model of memory
organization,search,andretrievalthat areusedto createa libraryof failure-analysiscases.This
library is lateraccessedby FANSYS whenansweringquestionsaboutfailuresthat mayoccur in
the DMS. A major benefitderivedfrom this work hasbeenthe formulationof a computational
frameworkfor (1) integratingdomain-dependentknowledgewith case-basedparsingstrategies
within text comprehensionsystems,(2) representingand indexingfailure-analysiscases,(3)
creatinggeneralizationsamongthesecases,and(4) usingsearchandretrievalstrategiesto answer
questionsaboutfailurecausesandeffects,aswell asfailuredetectionandcorrectionprocedures.
This computationalframework mayprovide a foundationfor developingsophisticatedadvice-
giving anddecision-makingsystemsthathelpoperateandmaintainNASA's spacecraft.

The experienceof designingand implementinga model of text comprehensionand
questionansweringfor failureanalysishasshedlight onsomeof the basicproblemsanyintelligent
computersystemmustaddress:knowledgerepresentation,organization,application,andretrieval.
The model has helped increaseunderstandingof representationalconstructsand processing
strategiesneededto analyzesystemfailures.As such, this research has been a step towards

modeling basic components that must be present in natural language processing systems.

130

References

Alvarado, S. J. (1990). Understanding Editorial Text: A Computer Model of Argument Comprehension.

Boston, MA: Kluwer Academic Publishers.

Alvarado, S. J. (1992). Argument Comprehension. In S. C. Shapiro (Ed.), Encyclopedia of Artificial

Intelligence (Second edition). New York: Wiley.

Bartlett, R. Davis, G. Grant, T. Gibson, J. Hedges, R. Johnson, M. Liu, Y. Patterson-Hine, A. Sliwa,

N. Sowizral, H. and Yan, J. (1992). "Space Station Freedom Data Management System Growth

and Evolution Report," NASA Technical Memorandum 103869. Ames Research Center.

Blattner, M. M. and Dannenberg, R. B. (1992). Multimedia Interface Design. New York, NY: ACM
Press.

CarboneU, J. G. (1981). Subjective Understanding: Computer Models of Belief Systems. Ann Arbor, MI:
UMI Research Press.

Charniak, E. (1977). "A framed PAINTING: The Representation of a Commonsense Knowledge

Fragment," Cognitive Science, 1,355-394.

Chamiak, E. (1978). "On the Use of Framed Knowledge in Language Comprehension," Artificial

Intelligence, 11,225-265.

de Kleer, J. and Williams, B. (1987). "Diagnosing Multiple Faults," Artificial Intelligence. v32 no. 1, 97-
130.

Dyer, M. G. (1983). In-Depth Understanding: A Computer Model of lntegrated Processing for Narrative

Comprehension. Cambridge, MA: MIT Press.

Dyer, M. G. and Lehnert, W. G. (1982). Question Answering for Narrative Memory. In J. F. Le Ny and

W. Kintsch (Eds.), Language and Comprehension. Amsterdam. North-Holland.

Flowers, M., McGuire, R., and Bimbaum, L. (1982). Adversary Arguments and the Logic of Personal

Attacks. In W. G. Lelmert and M. G. Ringle (Eds.), Strategies for Natural Language Processing.

Hillsdale, NJ: Lawrence Erlbaum.

Gentner, D. and Grudin, J. (1990). "Why Good Engineers (Sometimes) Create Bad Interfaces,"

Proceedings of CH190, ACM Press, 277-282.

Hammond, K., and Hurwitz, N. (1988). "Extracting Diagnostic Features from Explanations,"

Proceedings of the Workshop on Case-Based Reasoning (DARPA). San Mateo, CA: Morgan-
Kaufmann Publishers.

Hendler, J. A. (1988). Integrating Marker-Passing and Problem-Solving: A Spreading Activation

Approach to Improved Choice in Planning. Hillsdale, NJ: Lawrence Erlbaum.

Hodges, J. (1989). "Device Representation for Modeling Improvisation in Mechanical Use Situations,"

Proc. l lth Ann Meeting Cognitive Science Soc. Hillsdale, NJ: Lawrence Erlbaum.

131

InternationalBusinessMachinesCorporation(July,1990)."SpaceStationProgramDataManagement
System,"891BMXO367R1, (DR SA-25.1I), Houston, TX.

Iverson, D. L. and Patterson-Hine, F. A. (1990). Object-Oriented Fault Tree Models Applied to System
Diagnosis. Proceedings of the SPIE Applications of Artificial Intelligence VIII Conference. Orlando,
Florida.

Kolodner, J. (1983a). "Maintaining Organization in a Dynamic Long-Term Memory," Cognitive Science,
7, 243-280.

Kolodner, J. (1983b). "Reconstructive Memory: A Computer Model," Cognitive Science, 7, 281-328.

Kolodner, J. (1984). Retrieval and Organizational Strategies in Conceptual Memory: A Computer
Model. Hillsdale, NJ: Lawrence Erlbaum.

Kolodner, J. (Ed.) (1988). Case-Based Reasoning. San Mateo, CA: Morgan Kaufmann. Lebowitz, M.

(1988). "The use of Memory in Text Processing," Communications of the ACM, V31 N12, 48-62.

Lehnert, W. G. (1978). The Process of Question Answering: A Computer Simulation of Cognition.
Hillsdale, NJ: Lawrence Earlbaum.

Liu, H., Tan, A., Lim, J., & Teh, H. (1991). "Practical Application of a Connectionist Expert System --

The INSIDE Story," Worm Congress on Expert Systems, Orlando, Florida: Pergamon Press, 1-21.

McDonnell Douglas Space Systems Company. (Match, 1990). "Failure Modes and Effects Analysis

(FMEA) for the Data Management System (DMS)," MDC H4563A, (DR SA-06.1), Huntington
Beach, CA.

McDonnell Douglas Space Systems Company. (July, 1990). "Integrated Operations Requirements For

Distributed Systems," MDC H4380, (DR SY-46.1), Volume 1, Huntington Beach, CA.

MacLean, A., Bellotti, V., Young, R. and Moran, T. (1991). "Reaching through Analogy: A Design

Rationale Perspective on Roles of Analogy," Proceedings ofCH191, ACM Press, 167-172.

Minksy, M. (1975). '_Framework for Representing Knowledge," In P. Winston (Ed.), Psychology of
Computer Vision. New York: McGraw-Hill.

Minksy, M. (1977). "Frame-System Theory," In P. Johnson and O. Wason (Eds.), Thinking: Readings in
Cognitive Science. Cambridge, MA: MIT Press.

Myers, B. (1991). "Separating Application Code from Toolkits: Eliminating the Spaghetti of Call-Backs,"

Proceedings of UIST _91, 211-220.

Norvig, P. (1989). "Marker Passing as a Weak Method for Text Inferencing," Cognitive Science, 13,
569-620.

132

Pazzani,M. J. (1988).Learning Causal Relationships: An Integration of Empirical and Explanation-

Based Learning Methods (Ph.D. Dissertation). Computer Science Department. University of

California, Los Angeles.

Patterson-Hine, F. and Iverson, D. (1990). "An Integrated Approach to System Design, Reliability, and

Diagnosis," NASA TechnicalMemorandum 102861. Ames Research Center.

Reed, N. & Johnson, P. (1990). "Generative Knowledge for Computer Troubleshooting," European

Conference on Artificial Intelligence _90, 535-540.

Riesbeck, C. IC and Martin, C. E. (1986). "Direct Memory Access Parsing." In. Kolodner, J. and

Riesbeck, R. (Eds.), Experience, Memory, and Reasoning. HiUsdale, NJ: Lawrence Erlbaurn.

Riesbeck, C. & Schank, R. (1989). Inside Case-basedReasoning. Hillsdale, NJ: Lawrence Erlbaum.

Schank, R. C. (Ed.) (1975). Conceptual Information Processing. Amsterdam: North-Holland.

Schank, R. C. and Abelson, R. (1977). Scripts, Plans, Goals, and Understanding. Hillsdale, NJ:

Lawrence Erlbaum.

Schank, R. C. (1978). "What Makes Something 'Ad Hoe.'" Proceedings of Theoretical Issues in

Natural Language Processing-2. University of Illinois, Urbana-Champaign, pp. 8-13.

Schank, R. C. and CarboneU, J. G. (1979). 'Re: The Gettysburg Address, Representing Social and

Political Acts." In N. Pindler (EA.), Associative Networks. New York: Academic Press.

Schank, R. C. (1982). Dynamic Memory: A Theory of Reminding and Learning in Computers and

People. Cambridge: Cambridge University Press.

Stevenson, R., Miller, J., and Austin, M. (1991). 'Failure Environment Analysis Tool (FEAT)

Development Status," Proceedings of AIAA 91,676-682.

Struss, P. (1988). ''Extensions to ATMS-based Diagnosis," In Gero (F_A.), Artificial Intelligence

Engineering: Diagnosis and Learning. Amsterdam: Elsevier, 3-28.

Tulving, E. (1972). "Episodic and semantic memory," in E. Tulving & W. Donaldson (Eds.),

Organization of memory, New York, NY: Academic Press.

Wilensky, R. (1986). "Knowledge Representation - A Critique and a Proposal." In. Kolodner, J. and
Riesbeck, R. (Eds.), Experience, Memory, and Reasoning. Hillsdale, NJ: Lawrence Eribaum.

133

Appendix A : Case Descriptions

Contents of Case Descriptions

1. Ring Concentrator Cases

2. Gateway Cases

3. Standard Data Processor Cases

4. Time Generation Unit Cases

5. Fixed Multi-Purpose Applications Console Cases

6. Mass Storage Unit Cases

7. Cupola Multi-Purpose Applications Console Cases

:.:.:..
:::::::

)i)i

'3!i

e

4, u

: o _® : -,,

o

" "_ _ _o" : _'_

: _ _.o _ _, , o.,"

: ._t o_,,,_ o,..o'_'_ _. ._T : _-_

: o= _

• _ __ ,_o

o

,__ o_.,- .o

. -_ _ ,?. _ _.o o

'_ _o _,_ ._ _'_ ._

O,,,-4 •

,x.x

Z

0

z: _ ,,,®_ ,,,8 '_ ® S"" ® 8

8.'-_ _'_,_'_

,,w

= =" ,., ,',_ ._,

B o,"

C_°®Cu
o_ _

•._ 1.4 1-4,,_

._ _o"°_._ "

_ °

0
U vQ,_ O_J

0 _

= .== _:-o_.o
,_ .._ _o_
_ ,o_, ;,=,,, 4-'

... _ _=_ _ o ,_8_o"

.)

,l.J

°° o

_ o ,

_ •

--4

.w • o
0 _ _ fl_ _ _

_J

_.o

,-I W-_ -,_ 0
0 0 ",-_

@ _ ,-_ o _-_ _

_ _ _ =_ _ • o
•.o_ o _ 8. _ ..

u

°,

-,,-I IU

u

c_ A_o =,.

8 _8_8_8_8_:8_8_ _8_:_ _ _"_o.
t_ I 4J

®

oo

u

C_

o _
_. _ 0

......0 _ _.
ii! i-,u _ _ _

'Z

.........®_=_- -q=- -,,,-
::o__o.o_ooo.o_ .oo.,. _ .oo_._ oo ._ •. •0 OO _0 _0 l_O&' _JO _ l_J _ 41 I_ 0 _ _._ I_ _ O NI O _l O _ O _

4J E 4_U _ U I U_U _IU GIU E m n U I m g I_ _J_ I m I_ _, I I= / I_ I _ I

_ f_ _ I I I _ | O I I I I I 4Jl_l_ I r" I-IO I _1 _ I _' 1"11 Ill _-11_ U*_-I U'_ 0-,'4

I O O
_.a _ 4J I 4J O4J O 4.J I:: "_J O I _14J _ I_ u_ O I _J I_-_ D_@_'_ _k_ I_ _'_ r_

I_ IP: _-I O 4.J O _, O _ O w O I O _ IE_ I_ O O _10 O I _ _ O O _ O._ _-_ I I _11 I -_ I I..i-41 I

_.-I _ I_11 O I • I • I c_ I I _-4 _3 I_ I 4J _ I I OH I_ I _1_ I O _'4 U I1_ _'4 U • _-4 O _ _1U _1

:

A

o= _

g 0

"_ =_'_ .._

, _ _

0 _ _ 0

_ "" _ _,_ _

•. _ _ _.

i:i:i:i

iii!ii

W!i
iiiii!

A

..v
0 c:

8a 8 8 _ _

_. ® _.e8;_8eo= ®,_8 8,,- .._

1 "

•_" ,t_, _

41-,_

o

7 _ =

,_ .. o" ..8=" a _o,_ .. "_ .-,_, .. _ _,_

iiiiiiiii_o o.

I=

0 _-i

_u ..

•_i:__ _-.
_' >,"o"

_ o _

u

0

,_ 0

1,4

_ _ °"

U _1 0 H

__

M H HE_ U H

H _ r.. .

• _

0

_ =,-, .Q

- _ =__i_°.. _._=_ ._. , = .o=
O

_H _

,. o _ -._ =.o 8 •

)::!

)i:

x

iiili_
iiilil --8

=

I _-I I I "F_ I I "_1 I I

U E _ U IE _ U E @ U
e

: _.

m

0

A _,. 8

H

,_8 ,.,,.=_¢::3[.-*

'®

n. =

E@ O °

I

,....,
:.:,:,:.

iii!iii!_

_'iiiiiii

>>:+:

iiiiiiii

_ii!?

i_i/ii

//

iii!i!i_

iiiiiii_
ii!!i:
i_!! i_

,,-I_b

D:ii_
x,

..¢:::

=,A "_

, . _ o_ ,_
_ o E

v _ _4._ ,, _ 0

" _ _.= _ .

® : _ -.- .. _ & _ ..
__ _ _ _ _'__o_._ .. o

_o _ o_ _

""8 .,"&®,_,.,o,,,...o_o_o,.o?, ,.T, °_®,_z

• rv v_ v _ v

........
+:.:.:

o_ _ - ® _

i E I_ i

, ®o_ _,o@.,,_ _ .,,.¢

_u
o ,,-t

_ o

_ o°

o _ -. ..

c_

- A
A _e

°_ _o

.c _'_" o_ "" .c _'=_'_
m -.-¢ ca _- m

,.._ & ,.® -,.-o_.
o** e,1

® _ .. _ _ _ _ _ _ _ = _ ._o _.. _ _ • E-. _ _ " .. ,_ i_'_I _
_.t _ E-_ 0 _ _. 0 I_

.o I ,-4

- _ _ _ -_ ._ o - ._

T

E

u
°

rj o u

iI o u

o o _

.. [.-,_
_, o

o_ ""

• . u

(i

0

o

m

U _

IP

'_ _ ..

o,-_ o
I _1 I I r_ C I r..) 0 C I 4J

,<
u

0
gl

0
u

0

u

?

× _H

._ _ ®o _

"t (I) _ 0 • •

= : _= "_ "" ..'_ "8 ""

o _ _ _ _o _
.. _ _.., _ _*' _ ,

- [._ _ £,_ _ _ _4 _J

;:::::

))

:.,) .,)=,_ _'o_=,_o_ -

Ii_::__._._-_=®,_,_-.=®=,_=_

_n

u

o

,__ o_

_ U U
0 ,--I

a _ _ .._o

,--i

M _ _-4 M M

¢,') !
r4 V_ *--

o

o_ _ -o_

Eo_ o
4) _ _' "O r.

®_ ,_" .._

_ @ _ _ °°
0 .-_ .c: 0._

..o _.o_ _
O,

o

0

G_ • 113 G) _ a= U} I _ 15 (.) E

o ®_ _V'_ _'_

_ = _ ooo _ o_
_,_o_ _ o_o_ o_ _o_ _ . _,_

<. _ ._ o" "Co° _ _: o°

I

$
)

."

o u,-,

_=_o_.o

: r.. _ _ l1 0
:: ,.,.4 ._ t) _s4J

,a _ u

o._&
o

@ e'"O _

t-i _u

U _ W

_ T

._ _ o

,-4 0 _ _'

•. _ _

_. _°=o ,-, .==@ I l "_ "

o= _ _ _ o_ _ra_ _ oJ

: o

121 _: _ ._

_oo

........
:.:.:.:,

H

)

:lli:

A

, , e= e , e=. oo ou_ °

"1_ _ W-I 0 III

O

: ==
:

(3

:
: o

-

e-

X:: -_

"_ 0

• -I 0 '_

8

_ 3
_ o

o

o 0

,, ..,,., = • ,=_
o & _: .._ -_

= _ .. _o__ _ "'_ o_ _ _ _ .-; _.o=
°°

!iiiiii

ililil
:.:.:.:
:::::::

iiiiii
:::::::

iliill

ilii_i

iii_il

.=

¢1)

._ o

0-,,4

o0 _
.,_ r-

_.J ,-4 • 0
13, Z

C_ A

oz
_® o _

0 • 0 I
,._ (g0 r' .=

o _o_ _ _ --,

o _ oo =80 =

- o ,=__o = =

ii °i
; °,-• , ,_ '_-o_= o

)
i!_i!i!

ii_i

iilii

bl a.J ,ka

o •

o_=T._ • o =._ . _
q _ JC _C U 3_._

=_&'=_,_ _'_ • _, o

.0I__._= _. _ .._. o
**o _ . _
=_=_o_ _ _ _ •

o_._ oo _ _._ =.6• o_ ,_o._o_ _
,_ ,-_=_ =_o_. *_ .=

..... o

I_ _ 0

c;

o"

0

ac:

@

0

e

e

:

e

o
o_
0

o

u

Q,
,<

oo.

o-

°_ _c.
_ ._

_._o o

_i o=.

_ u .

o " _'"_

_ o_
o_ o_ _

®-

4J e_ I "-

"

:i!!!

• _ " 0 W

0 • U r" _-_

.,J 0 _ _ _

® _ o

G 0

i _ r" e".,.i _ _! •

o " "_.. °o=_ o. .o

o :o _ .,_ _ _-_ =_,-._ ..,_ _
•.-4 :=1 0

u _ 0
o _ _"

_ _ o_ o=
_. o-.4

e' I_ .-.I ell

_ _ _ o._ o _._ •
:_ Q, _ UV"4_o_ ®_'_.

0

_ ,_ _,,_, o_

o. _ ¢n

o

@ o

=,.o I°_, -

"_ '-_ 0 t _

:='" _o_ _ _,_ _.
o_o_ ,_, ®,, o

°" oo _ ,

o. _ o_

: 0 I_ G..--I @

o "_ ,_

0 ,,.-I II1 @

0_'_ _

_o _
_. _

_ ,_ o

et_l o

_ o .

- _ "• _._ _a'c

' _oo _ _o_

Appendix B : Detailed I/O Examples

Contents of Detailed I/O Examples

1. Parse of RC.1

Full Parse Trace

Expansion of Final Instantiated Case

2. Parse of a Question

3. Generation of a MOP

4. Memory Retrieval Traces

Direct Retrieval Example

Alternate Entry Point Example

Elaboration Example

Last Resort Depth-First Search Example

"o

8
8

E-J '_

_ y _x o

, o=.,,., o=.;
A Z !-_

" _T°°'T=_,o

x"_ '_?•. & ,aT
oOo______

,,. u _ ,.t ,.. u

,'? ?
o o
<

o o

:D :3

=¢

_o

0 _ _0

¢,,1'7
r,lH ¢"3 ¢._ ¢/_H

0 _0_ _

i.-i

..=,;.._..,=;.._ _

_'= u _ =" = " = " 8 Z880

= =

4

Y!

_i!ii

t,

I

:: _=

1"'i :

_., :
_:.. :

¢.

_C 0
_ '-4 0
o mw.-_

8 o -4
,,,-t _ @ II

_0 _
P, .,.-i0

Z 8 ,,,=,-" ,,=o=,, ==

I

i

" d

E-= e._

x

e,lt; t_

=_B B
r- © ,_ H

., "8 8
..T ;..8 8

- 0 _1 _ O_

= =

_B _ _ o

o_ _o ?_

z_
_ _ o_

I I !

_0 0 DO •

0

o
0
z
I

o
m _ u

__:_ _.Y_?B_,_®._ g=_o

oo_<_ _,
d " "_

z.-+

i ,-.,..T, +..T+T ..,+.._ ,,++ ,;&, ,, +, "'" '< _ ""_
• . .. E-+ "" I _ "01+'" I _ I I_ I

o o_o_ _ ,_ .-...,,,,,-....,,,...+ _ *""="+"_ .-+...,,,,,-....,..,,,,..., ,+..,.-'--,,,,,,-,c _ < ,'..,-,,,+,"...,,,,-..-+++ o+ + ++_+o-, _ o+o-++ o_+o-+,+-, +o°+o+ +++o-+o-,0 _ O 0 _ O 0 _ 0 _O 0_,_ U,_ 0 _ U 0 0 _ O 0 I-_ 0 _10 0 I _ I 0 e_OO _O0

N N o N - o-

I

.q

>

• --i .i,

_'0

_.-,z
.qp .,m I-i

,-I I-I ._I iI

,-,._

N _=_..,I N

[

° •

v

,.-I

o

"7
0

Y

c,_ II

.o

0c'l I _I-4 ,_

.._, _.._ .._,
e. .,-i c" 4, I-_ c'

u

):i

t-.t_ i.-le

c4 l.,,,1

o o

_'0 _'0

Z 0 _ 0

O_

8_ ,-,,', _
I _

o_,_ _

v _

!

_ o
_ ,.':I,

0 l,-,

_8 _'-' 8

Io¢*, _ ¢,,i i-io i-i

..:,_o_..._,__,_i HM I C_ I I-_ l,-.l I

""0, _ 00 4, 00 I _ ,,

L)

_, , _, ,

t II I I

0 0 0

.., . _
8 C,] I_ ¢.]

= 8 8 8

0 0 0 0 0

8 °S _S
cO

r

,=.,
,.>,

o
H

UP"
. 0
E, Ln

g

°

_. _+ +_.+_.
o

_n

;T ;..T ;TTT ... ;

_ _ o_o_.-_ _ _ o_:_ _-_ _ ._ _0 0 m o o 0_ °_"'_o m u

x x

o 8?
O O

H
E_

m
o
u

I

4_
z

O
U

x

Z
o

?

o

8_
I_XO

i-+
E-+

0
L)

0

o,o_ + _)_ ,.°,.° _ _H I _H I I I m-'o '-' _:T '-' e
.._ .. , ,.., ;;..T;..Ti;..T;..Tg..Tg.., i; , ;; , ;;

• _°.°o..._...,.g-_o_°o-°o-°_°o-°+_°o-°°.o ° .°.°.° .°.°.o .• * +. ** N .* _ ,, N ,,-4., N _ o, N -_ +* N ",4 ,. N ",'4 ,. i.] ,.-i +. N

OU

u _u _u

_0

omZ_,

¢_ ¢0 I-¢ r-* 0
or') I E''r'

.._, _;.. '

0 _1U 0

3

i:::: m
,II

o

.. _,._, g.. V

o.o_ _o o

0

Y

Y

1

oozu ,,_" _-rC ,n,_

• ,., ._ ._

.. U..,_g _,"..

Z _ Z Z

o 8Z o_o _ o I_ o
0 0 0

._Oo_i, ..o o o g.
O_ZO _0 _0 _

°. _ 0. o0 .° Z O

_. _ _o o- o_ _o_

" _ __

_=o _o _o _o

l

Z

u_

I

zo
H H

_l | _ _

_ _ _ _._

_ zo__Y

0_ !

g

_zo_z_
IHHI _I_MI_HIU_HH

_ - _._ _ .._.. _.., _.. , _o

0_001 _10 O0_O O0

_o _o _o _o _

• o I_ o o

_o _.o _o _ _o .

• "_" I I_ 0 I 0 I 0 I

: ::, _,_-_ _ _0 _ 0 _ 0 _ 0 _ I

I_; = _ o= o=

0

:z:,_

H
_m

_a
_ m

O_

g-

_ o o''
-,_ _,_ o,-

'.,_, _,_

_m

z_

o_ = =

o m o

9, _ : N:

|iil

1.

P_

0 ¢_
t--t

I I I

o o

O_ O0

• • o

o_ o_ o_

___oo_

)

Iii
I

"D

8

Gu

, • o_o_

, l E-_O.--I_'cl_ ¢''1

I I I-_ H I,H H I _ H 0 I r" I-4
1 _J_ I I_ I I--I _l_ | i.._ _J_ I

_ .. " _C .. -_ o :_..
N ,o I ID_-,-q / _3',,_,., / 's" "" I

H I= NH K:: I I H I il_H _"

i)o., o
cO

,_v v

r..-

o.=
1-41-1 Ig I

.., ,=_, ..,g.. ,_, -..

_o _ _..o _ m uo,oo oo_o _ _"_o,

,

,%

r'- O I_ r'-

_ • o=

=_==_.=o==
.=. H,,_ =.

®,4 ,.;
8 .'

_=o==

.._, g_7_ ..
•,-I ,, _ °° _

i
_..,, :r..

0

_D

_ ° °

_' '2.'2.
H I--I
I I

°. _ "_

m:
8_

:I:

[-, I

[,-I

OCa

ll_ ° •

• _ ,q oo..,

..=_, _ g..= g..o_

I

£

m,_m,.u,

H
I _ I H •

,_ .._, _;.._

_ ..=_?

aO Z _ * •

l l_*rl [-_ [-* I * •

i_ i ¢,1 ¢,'_

•, ,, I I[_ I

x

o

O_

_o

_., _
'0 r_ 0 I'- E_

A'_ _'_,

°_ I E,4 °r"_ I E'4 Z

..T;,._..T&.._

I. _" "

Z

8

_4

"T

• • •

UIEE "_'v I * ,(") o_1'

_ ..T ;..T ;..T ;..T ;T
. y_ Z'_ ZH_ Z'_ ZH_ _

Z®. -" "®

¢)

i<

iiii

• unx

...._8_9_._

;.._,;.._,_,;,_
.,._N ..,-1 o, N o, o,

i:

I:

e

UH

,Y
X

_o _• _"0 •

. _ ;.._ .._, ;.._, ;. o., =

•_ _ _ _ , _ _ ,__ .".-,-.-,_ o ." ,_
0 _ 05 0 0

_I |

• _= _

_... _
"",. I _,,_ _ _

0

i
|

o

z
H

_HU

O_

O_

Iy_4._ _ ,
_.- _Z

,, I _,,_OH_

z
'_H_ _H_

t_O ,-_ t_O_ u_

:r

_0 MH_O HH_O HZ

O_•_, ,_ .,_ ..,=

..,;.._..T ;T=o _o_- _-"

_o _

. _.
_u

•. ._._o -'=;-_,_._ o

•w ,w

A

u,,'. _ u
0

= = ,,q,.,- =... ==

= _o =

Hu

,.-o i Y '-'",i ,Y"'/,_8 = 8
0 1 .. -. _ .o •

of._

•w ,w

H '--I

z> _.
,w

_ u

_8 " "
8_, oe'_U

_u

i_¢.d

_t

z

ca r..

e
i

o_ o

O_

" = o,4 _ _ _

I_ l_Hl_ H ! _ H I_HI_HHHH

_9 =i =i.._i =_ ,

' _ oz oo

,.¢

z _H

_MU _HU

O_ O_

0_ 0_

ON

_ .z,_o_, oo=,
I_HI _ _ <

T;.._ == _• , OH_

<u

c_

_ t

z '_ z
H _ H

_HU _U _M

O_ 0._ 0

0 '7 _-1 0'_ O_

_ E-, {.3 G_ _-, (.9 E" _-'

_0 M _0H_ _

Z_ UZ O
O0 '_ $ 00_ t O0
u_u _E u}t_ _ _u

,__.'_, ,_..'_, ._=

u

Z
H

Ul

|
Z
H _

Z
H

O_U

0_

H _

_HO

0
OU

,.¢

z z

u

m_ O= O_

.,_ _

H_U _ U

=o-_ _==

T'" _

..T;..2_8 _., .8_T

8 =

z

_.

UH_

o
_u

• o ,, ,, _1111

oz== '_'"o. o. ,.=,-=o.,_oo_ ooo

,-..v.

o=_ o= 1 o=_

H =

D D D

_ _ _ ==_

H_ _ _H 8 _

Ol =UOI =UOI

.o = ; _ .o_==

£= == £=

H ¢--1 £3

"_¢n

OU

ul

u _

=o=°= _

=_,=_E,=_o_==

• I"_ I.. U ¢2:,,o_

_E

.....

OU OU O_ O_

=== _== == . ..==

oz= oz= 8 =.. o===uo, =uo, = _T .., _.._=u=,

= "" 0

= = = =

!iii o

o

0

r._
(-_

T
,= .:
H

_q
.q

j
T o-

0 _ H ,-_

H

Aq

C-

o

=,

0
U

A

d Y _ . .

_HH_IO

_IU_I H==== _ T_='_=8o=_ __Ao=o°_=_a_A =_,, o_,_ --_° _._,,o=_ -_-°' _ _,
-,=o,_, 8_ _'_-'_ <'

I0
_O

_M

HH_IO

0 0
u u

A

Z
0

I

r,lL_

_0

M _- trl

_>

_, I =)

¢.,'11 X

O_
I _*-4

U _

EJl

A _

0

0

.U

_.)

v_

o_

,_ °

o

_U

0
Or-t

_ • [-q

U 0 I

_oo _ oo

_ lip *-t

-,,-t

A

0

_ _ _ _'' '_
0 I I I I I I

__ oz - __ o_ _.......

V

_zz

_=£ o
O0 _0

___ ,°
e'l Z

0 _

_Z
_.-4

o_

o • •

1.._0

'f ,,..
_ •

_o_o _o _-,-4 _

o _ _

Z 0Z _

U 0

cn

U_: rE 0 0 £-_ 0

_" 8 _ o

.° __'_oo _ _,

¢.1

8

..,.g
,_' 0

U_

g8

: g :_® :

: , ® . : o_
0 u

: _ o_ :
0

: _ o_ _,_ :

: ,,w = u :_ ,o o = ®,.wu-, _s-., _ .._

: . i

z.,

t_

@

8_

O,-_

• -t ¢1

r,
o

u_
@ @

O •

?g

g_

_ A

0 i

o

T_

£.._O

IA ,I.

_ °

t;=8 8 , o

"' _ ° _o _ o _

o

0

"'5 '_

.

_8
_.

, &el i i&, fJ {..i 114 ,-' _

H

v

0

°

°

! °

c,.

r_

o

o

o

I

r.
o
,,-4

g
Jc:

U

.,..4

P

o
z o_o

= y

_ 0

_ o o _

& o_ .. _

o

o _ _ _

8

8

o..,

o

0 ! I I

_ o _ o _ o

, _ _ .._ ..___

o

0 _,10

o_o_
°H °z,¢

r_

o
UU_.I I=

- .0_ _-_

_ o

:£

|

8
o

g

I
,J

g

0

o
u

o

r,,

._ "

• 0 O@ 0

_" _ '

_, _ _ _'_ _. o oo

A
Z
0 A
H O_

°

_Z

" °
_o

oy
u

o"g =- $ _.

0 0 "_ _-_ _ I

Z

H 0

y

! o
l=d

I

_ _ _ _o ._ ._, = _o

oo_ o_ _ _ _ _ _o

IU

I

_g
XI
iX

HI
H

H

+ ez,
_ H

._°

_ H u_u

.._ _
8_ o0_8888_ 8_oo

A

_-t Pt

• °

v _

"I.

V
I

a

i--I

_ °

H

I "

U H

8 ,, , , , , ,o , , , ,
!_ .,., ,. o ,,., ,, ,.., ..., .. _ H., .. ,,., ,..* .. ,..,

U UU_ UU_UUUU_ UUU_U_UUU

A A

H _

• °

H _

. o_ ._ _,_o

°° o ,. l° ,° °, °, °° ...,

u uuu uuu_u

o

H

U O

_ U U_

d d _ _ o_
_ _ •

, , _ _1 o

• _ _

o

u

.... . _ _ _ _ _
_ o

,,¢

Y

"I.
P_
?
T

ill

I
m-(

4.J

"I.

H- T

°.It

_i)r-

r.l ,-i (.J

H

o_,_

°lY_ ,r,,

0 ! 0 I

° _ °°

_ _' ' '_8_'°__ _®

ooOo

• • _

! I _-I

o,I ,,-.t

• • •

I I I I I I

8 _8 __o-u® _' ''_ _''u_ _''8 _' '_

8g 888_ ooo''_8888888""o, 88"''888888gooo oo8_ 8888_

I
H

H

!
,,#,
I
I--I
v

H

_ °

v

_ ___. .

...... _

666 _u_

_. _. ___o . ____ .

O0_ _ __ _ __o°

@_ @ooo
"_ _' '_'_'

,, (.I ,,., _, _ ,° ,, ,, ,, ,,

8'4 888_ 88_=8oo

U_

_E

H

_ _ _ _ _ _ _ _ _ o_-_ _, _,

.... i i ;_ _ _ o_ HH _ _Huw HUW H
8 o _ o _ =_ _ g .._ _ _ _ .._.. •...................... • _
_ _ _ _ _ _ _oo _oo _-o. _ __ _ oo. o

U _UU UU UU U_U UUU UU_ U_ OUU UOU U_U_ UUU UU U

d

H

?
I

H

(n

• • ° • ° ° °

°o._._.ooo_a_._.oo_ i aa'_=°_" _=o_ _'_°aa_..__°_'_ _ :._a_a_*._ _oo_.a_ _.oo_a_a__a_a._ _a_.o_
_ ,,_ ,, ,,o ,,I I I 0 _ I 0 _ I I O _ HH_ HH_HHU@ _ _8 _8 8

' ' '_8 _ _ o o o _ _ _ _ __ _ _
°° ,° °° °° ,° °° °° _ ,°

000 m O0000x _ __ _" _" _" _"ooom o0o_ 0oo_ _ _0000_ 00_ 0000_

_ UUU UUU _U UUU
_ _DUU UU_UUU _U _UU_ UUU UU_

un

<
Ur,.i

t9 °,-'_

_SY

_ ! ,a'

O_'IZ

ZU_
H 0.-_ O

d

#
H

'2.

T
v

A

0

u_

u_

<r-

Y_

O<

E-.,O

g_.-.-i m

........ _ _ _
..............o _o _ ___'.... oooooooS_oo o_ _ _ __ _ _

_ _ _ ooo
• o_ _ _

Appendix C : Code Listings

Contents of Code Listings

1. Instructions for Running FANSYS

Primary Instructions
•README

Help Files

• HelpFile

* myinspect.help

2. Initialization Code

Loading the Primary System

• fansys.lsp
Loading the X-Windows Q&A Interface

• cmumain.lsp

• cmutrace.lsp

Loading the Predefined Cases

• loademup

3. Domain Knowledge Representation
Entities

• entitics.mops

• systems.mops
States

• states.mops
Actions

• actions.mops
Events

• events.mops
Procedures

• procedures.mops

• groups.mops

• causes.mops
• modes.mops

• detections.mops

• corrections.mops

• effects.mops
Cases

• cases.mops
Questions

• misc.mops

4. Memory Organization
Structure Definitions

• mem_structs.lsp

Memory Generalization and Retrieval Code

• mockmops6c.lsp

MOP Creation and Indexing Code

• memory.lsp
MOP Definition Macros

• mopdef_fns.lsp

5. The Parser

Parse and Activation Functions

• parser.lsp

• parser.mops
Lexical Pattern Management

• ip-fn.lsp

• hlips.lsp
• hlips.mops

Miscellaneous Functions

• failure.lsp

• failure.mops

• lisp_ufils.lsp
• misc_utils.lsp

• predictions.lsp

• terminators.lsp
Generation

• generator.lsp

6. Domain Specific Parsing Knowledge
RC. 1 Text

• rc. 1.txt

Domain Lexical Knowledge

• entities.phrases

• events.phrases

• procedures.phrases

• groups.phrases

• causes.phrases
• modes.phrases

• detections.phrases

• corrections.phrases

• effects.phrases

RC. 1 Processing Knowledge

• vocab.phrases

7. Question Answering

Query Search and Retrieval

* question.lsp

Question Processing Knowledge

° qa.phrases

8. User Interface

X-Windows Interface

• myinspect.lsp

• gamload.lsp

• interface.lsp

• title.lsp
• tclient.lsp

• tserver.lsp

Natural Language Question Shell

• qa.shell

9. FMEA Manual Cases

Ring Concentrator Cases
• cases.re

Gateway Cases

• cases.gw
Standard Data Processor Cases

• cases.sdp
Time Generation Unit Cases

• cases.tgu

Fixed Multi-Purpose Applications Console Cases

• cases.fmpac

Mass Storage Device Cases
• cases.msd

English Case Descriptions
• cases.txt

(J -,-I _
_ _ n5

m "_l (J
U U _
qD _ •
0 • m

_tJ _

I

E

o *,-

iii_ _ .,._. __

.1!:

>,

o° -._

o
t_

ta o

U 0 _,J
_ o I_ o_o _

_ _ o

,a

_o _

o
U 0 !

i_ii!ii

iiiiiii_

iiilii_

iiiiiiiii

1

"El _ I-_ -,-I 0

0 _ 0 •

@ ell l,-I 0 ,-I _-I

m

__ . o_ _o _o_
_ _ _ ._ _o.

. o _ _o_ _

U I_ _ 0 ,-_

oo -_

@

aJ

o _ o _b 0

•-¢ 0

0 II1 .CI ,.-I _I._ r', ID

0-,-I _

0 q l-t

a !

o

o

o o

"[3 el

-_._ ® .
0 t_ 0-_ _ _

0-,'_

,,,-,t

oo. _, _ _ = ,;_

_ o _ _ _ _ _ _ _ _ ._ _ _ _ _

,--i

_ _°° _ _ _° _° _° o _ oo o _

: o"

• ==
: o

,= ,-

3r
o

,.-. =

"4 0

_ : Oo_

0,-4

• _ m

o = o _
_' o :: ;: o :: o. ..o .. o ¢ ::o

:: o= _" :: ._

" .ra
.K

• 0,.-4 _COB _ ._,a i,,_ •

: ,_ _

: o- _. o_,: _-_-_

. . _o_

A

_ 0

0 _ _

k E _ E 0 I E I

04_
r_O_
(/) £:l

-g

:::)_

_ A

U_ U A

,_,_ _ '=Y

U _E U

o

m ,,..i
: ,o _, T Y , ,

oo=, oo o.= oo oo oo oo.= oo o_o _ _ooo oo oo oo o

o
Io

4J q, -_

" °= _ ;

? -• : _ = -4 . &&
: _ ,.:4 _'_ _ _-o o . '_ _o_o_

0 •

o o 0 m 0

o. o. •....... o. 0. o... °. o. o. o... o.o.

r.

. o_

,.-.

: _._
: o_,

: _._

: o
_a

in

o _o_ _ ! _
i.i _I

A_

t_ 0 a,u

,, ,o,_, _ _._

?,if-, . o -,:,"o

• r-_ .Q I -- 0 v

I o.iJ I I I _.a I I I ._.Ja_.J I .l.a I I I I 1.4-,._ _ I II I

, < ..., ® =_= • ,, o= o°'_' o o o-.-," oo o,", o o o._._ o._ ooo o_®._ oo
EEl =E _ _ o _ _ EOO

_o _o. , . _ _ . _. _ _o _ _

c>

°

o_ _ _ o

oo
1.4 _._ $! U I

"I_ I_ l.-i l i I I I

Oo o o'_'_oo_o_

0

¢-.
o

A

ooo .

: :

". 8 _"_ :

: _ _o

• _ o _ _ •

: .= _ _ _o_ _
°- ;_.: _"

_ :

:, _< _ _ °_ :
• _ :: _ o_ _ :

eeee_e_e_eee_eeee_e

A

I _" _J

8

0 m

-o, _go . o

_ U-,-4 _ "0 .,-4 -,-4

_)r.,.1 1D _

o_®®.=..,o°&_."°'_ _ - =' -.o.oo.o_°'°°'°. o.o,.o _ o,_o ,_:_o,=._._,o. o_ °o.ooaoo = _ _o

o_ _ o_UEU 5T _E"'E
u E _ o IE ®o "_ E "o E o •

i_ ,_ o o.o o u.o._ n u o.0 o u.O.-_ n _ _ u 0
IHo_ on Eot4 0_1 Uell_ OUO 0 _ _ _

A

7

u

_ _ o_ _ _. _

oo_o_ _ ,oo_ r oo =_Ou

oo,o_ ®_°° _&< ooo,. ®" - _<®_ <_ o_=_°

4J

_0

: o
o o
- Y
,._ c.u

b4 I _ 0 _

o,_u _J

g

o

: o
:

:

:

o
O Z

o
OF4<

F4

ID ¢t_

_ AA

I _,.).7 o 1.0

_o_o ___
_ zo__u

i_, _ _'g

o? 08

=_ °_oo_ ,_" _g
D.C R E_ _ _ D._I

o®.ooo3 oo_o® oo_

c_

o

A

8gg_gg_ _g

_ o o _ o o_ o _ _

8

8

m

0 :_
u,--t

o
;.J

e-

0,_ _

o

.. 3 _.
°o

A

o _

j., _. o
O r. _ Ul m I_

0 0 0

"0_ • @ @ "0

_ " "3 =_ ; o o •
•11 u

,,,, gee eu e ':E_

z : o"-" _EE _: e __-_

o

E 8
uA A c
• Z O_ 0

,o

&,,,.- '.:
E_ e.-®_8_o_oO'_ o e®,_,:_

'_" 8"_oo o o ,-,._.= ,-,

o®, ®®-'=.-,"=-" o®_ ®® _,= u=._= .,_ =

o_ ,,m o 0 :L'.}o o _o _, • u o o.._ '_ o o _ o 0 _ I I u '.r="r'_c:o',-',
11 0 0 '' 0

_ I _ 00 c_ _ _ v_ _

_E

.r'

";'8

o

_Z
_0
¢:_,H

Z
OA

_ _00

_ _ o ==

_UO0_O0_I_ _

_0

_ ' _ -
__oo

o

u

I-4

Y_
o_

0 _0 _

O_

_z

E

,++

u

)_ i__0
EO_ _ _ _ ==o

O_ I

_" _:_ _ _U ,,o
o_-__

,,o_o-__
oo

°8= 8O

'
o

"(3

:: _ °_' "_"o :

o

: _ _ _ _ : _o_

u

o_

_ o _ _ o _ _o o_

o
C_
o

o

n
o

_o _

: - . . _.o_-_ _ : _o : _ : ."
• : : _ • . . o_

. o .. :. _ _ _ . _ , : : .

o_ o _o_ . _ _
o u_ : " : ®=c_ ®' ® "0 _ 4, •

:. _ _ _ : : -. _ o_. _ • _ _ : o. .

_, ,,-i

• o mq o-O u .._ _._ iq , 4J • !

1.4

e _ ." o mr"" <UD_ _ , • _ o E W .,.-_ .,c: .= w_ ___ _ .._ - ,", "0 m ,_m W c:e • ,.a

,, _.. r... ,', " _' _ " " * :" :2:2 ::

: I I I 1.:.:." "'"" ...
.... 0. °. °_ ._ .. °_ o_ 0. °. o. °....

4, _ "

e

e

, ,- _ : __ _®" :

: o_=o _ : _ • o_,_: _ = _-_,_:'_

• _o 0 _ "_ _ _ ._ _" _'-,-_ ._ ¢Y 0 ^ _ _o _ _ _ 0"_ @ _

: _® _: _ _ =o :_ _-- °= _ _

_ ,_.J .l._ .i.a {, 00

:> .=

!i !: !: !! !! !_!i !: i: _

r. •

& -,=

o

"_ _, :w

•--4 •

_0 -,-I

k_.O

, _, : _'_

0_, _

. o _= ?: --

e-- ,.-.

E., e,._ i.) ...,i a,a _ _ I=H
•i, Qj •

::i!! !! i! ii i! i! !! i! !! !i !! i-!" !! !! !! i" !" !i !! !! !! !" !! !! !! _ -

t,

.q : _ :

1.

C -

o E -- :

" ! o. o - - .:

: ,- ::

,.._ ,. 0. 0... "%3
0, ,, 0, ,, ,, *,

o .

_ :

'-',-4 ,._

c.®_=:

®:5:

=.®=!

e

:_E :

. o_

• _-. 0

0-.'_

: y®o

OM

,,--I ,_ _11

o. ,. •.... . *...

• . o. 0. o... ,. 0. _ _ o.._ 0. 0. o_ 0. 0_

: : : : o_

: _ ._ : .. _

. o=.._o , .* : ._ o _5 .---- "_ : "

.i.a _10.-I _: -.._ @ 0 l=.l_'l= I I I

• t, _,J :=1 O 0 0 H O 3_

• _=_ :_ __ _ _ _ ,..: _*
,-4 • o. ". o- o- o_ "" °" "_ °" "" °" °_ °" "" "" _

- ii ii !!!!i! !!!!!i !!!i !!!! _ :::::::::: :::::::::::: :::::: ::

0

: : : : : :
. . .• : : .•

: : C. : : : :
: : - . . ° .

• • : : • :

:_ _ : : : :

.-,_ : a: _ : :
_ : _': - _. : :

:_': _ .

I -.4

.o. _

: 1_'®. _ •

!ii _ :_.: _

: _: E : _,: _ :

: .: _o _ : _: __ :",4

-® : .: _ = . . ® - • o- - =
o- : =1 ®--- " : ® g : : _ -_ -

0,., _, _

:_: o.... _ :°" _'_ "'_ _i _o.._o°" -.4 • _ • °.

o _._ _ :._: _ i_i _ _i __
o. o. 0. _ 0. ,...

. ,- _,o o=

: _ _ oo
: _. _ o

"-__ i° _

- EEEEEEEEEEEEEEEEEEEEEE

_0

O_ J= I m

O;

: _ _ _. _ : . : _ _ _

: _'_ _ _ : __ : :_ _. .
: _:_ '_ _®_ . _ : _ _ _ _ _4' "0 (_>'" : - _ _ : _o

,._ ,

: _ _ _ _ : _ "_: ,_._: _ _ o, o : _ . .. _ . o_ _o °_

U "_

"_ " _ _ "_ : ==_ _o o_u

u 0 _ o 0 _

_ _ oi=. _._ o_ _ __ _ : : : _ _ : . oo
: _,. _o_ • _ : .-_ : "_ ,_ : _ =,_ . o,_ ,_4J_ _' e8 J_ m

_ _ z'-' _ _o:

.®=! "' "_ ._._ .. ,_._o®. ooC_vJ

" !i!ii!!_i:.!i!i_"................. _!:.!!i!!!!i!_!!!i!!!_ - ::::::::::::::::

: : : :
• e •

: • : :
• : : i

: : : :
: : : :

_ 0

= . . : : - :
. _ . : _ :
• _, : : _ :
: _ : : :
: _ : : : •

• o * •

: _: : _ :

: _: _ : _=: o _ :

: __: _ : __: _ __ .e

me _

a,,-_

_ ,.

''_". :." '_ , _ _, -..
o _

I ,-* D:__ ._ o._ o

... *... .¢_ .. ,... ,... ,. _D
o... ,... ,... _ ,... 0. ,.....

o_ _, :

:
_J

c'_ e) U_ •
e

--;_ ®= •
_ _ :

o_ i, m , s:

_ _. :

_ _"_ -_-; :

!! !!!! !! !! !! !! !_!! !! !_!_!-::.":.: _"-

o -_..

" i " i °'" " "
= ,_ . _ ,-_ (I) " _ " ' S:: 0 _,a _ . ,r.. e" 41 "0.

®o®.,: =" :) _ _ : = o=" _ " = " " ""

.o, o - ._,_ .o_, o.o.ooo- • -.
0_ _'_ _ 0)_ _ a.a a.J I..4 19 I)_

_ _: .,,._ _,_ _ IC _ _ M r' :3 4J _ -_ 0 "° _ 0 _I _ t_ _ el _ I'I "0 _ 'i_ _U

0 _>.Q _ i 4j N .,._ .0 @ .,._ @ ..-4 _ O U @ O_

u_o_< e ®.c m h o ,-, - =E: ,.,, = or"
="--"" _,,,, ®. ®_"=® o_. =®._._._ = ..,,,-o.,=_.

ii i:.i"i:.ii i_ii ii _ -_ _ !! !!!! !! !! !:"!'_!"!:.!! :!::.:::::::::::::::::::::::::::::::::::::: -o. ,. ._ o.

A •

: _: : o •
0 _

: _: : o_:

: >" : _2:

0 _ : _ . ,.4. 4

o . : • : _®:== ,_ --

• _.:

_ : :._ _ ._ ,_ . _

.4,, _. . o" . , o. _ o_-_

_ _-o _:

4

: _

• _. , _-,._--._,0 _ _ _

: _o° _-" "° i

: _ z®_ o_'_:

¢ r. r,

• ,_,, _,_ =._o . .: _.o" o°o "_

e

e

G) mE-, o_Jc:

@

o o .o
v _ v

E_

!!!_!'_i!!_!:.!i!'_i'_!!!!!!i!i!i!!i!!_-=

o _ _ o
. _o o

o _ m

0. ,. o. °. ..

, _: _ _== _== _ _ o

I _ .0

_ '_" _0 u

o _:

® _:

o_:

e

J_ _ 00

: _.. _ = _ o. _
,-._ _ _ _ _

: _ o_?, ° 8 "8 _: _=-_

: _ ,-'o_ . - - _- _ _, _

:._ _:_ . _: .. ,_o_ u _ _ _: _-'"

:.iiii:._:.i-_i_i_i_iiii"i"i............_:......

: : : : : : :
: . _ _ o_
: _ : ,_ "-_ : _ _ _ •

_ _ _ o=__ _ ==. _=, . _ _ _- : _ : _ " .. ._-_ : , ..._ : o : . _ : ._ _ 0

: ° ii _ " " _ :

: o _ " =_ = : _ : : _ : _ •
. : : _ : u

: _o _ • _ • _ _ : =. : _

: • = . _ • =_ . = _ ._.

o

: _ ,-.oo=, _,,., . = ,_._,,. ,_,4 _" ='_ : _ _=
:::2:::..:.:::-:2 __. = -

:: :: ::'_._ °. .. o

°. _
o_

-r_o

_0
Or'

A

•k •

e

,_ tc ,--i I_ •

,-q

o

o: - : - :

o : _-- : _-o-_

: •o_ : Oo _

0 " '_

-x

• (g #J

o_ _

o.. ._ ,_.. _,o >,,, _'_ ":.............. 2:
:''22_2""2-'2_ _ _ -_- -

A

o,-_e

U) • O,_e

t, X -,'I t"

H _l t.. •

' > _ : ._,:
O.,a

n-.-_

: : • : _ _ :

e e "_

• _ :¢

: ® : : o_5"_ : '_ : -4®., ®.
:_ : : . _ : o_ : _-_:: . : : _:o_ : _" : -_" "
: _ : : _ _: _ : : -... _ _ : o_:

:_. : : _ _ o_. _ : :_._ o
._ .o_ _ _-._. :

-,-.t

i _ 0 ,...q _j

I C

! i: ! ! i! '" _o_ °""

.... _ ° " !! !! !! !! i! i! i! !! !! !_!! !! -_' _

2

z

.7

X

H

_ o
m

o_ _ eq

o

" o"

,_ ..-4jD
m o

mo

co

_E 0

_ _ _ 0 0 _ 0

.. _o_

,..... ,. ,.

_ 0"°6o_ '_&_ .. 0o_

_ _ o • c_ _ ._ _,_

o_ _ _ .-,,_ _ o_.....
. o _- o

o

, _o _o,"
o- _

o _ _ _ _J

l.a 0 $_

.,_ _ _ 0 0 _0 _ _J,-_ @ _

o

0

.-4

c: E_ _ l_' rJ

_ _9- _ -

_ _ 0

t_ ,-_ ,-_ i_ 0

o..o

" ..
"_ Ul I 0

3 m

=o

0

A r._ H

m

o

o _c
o_ _

_ _ o
o _

_ U A

0

_ _ _ _ 0

U

o

__ _oo

._ 0

= _. _ = , ^o.._

oo.
_ __ _o o_ _o_ o_o_=_

00_ 0

. _ "',_,_ o ,_= -
_ .o_o

e_

c

_ I 0 _

o

A_ o-.
O0 I ,-_ ,,4 .-4 _ 0 _ m .'-(

o o _

:D ,_ ..

:o

A

I

A_

o_
_0

_0

0_

O_

e4 0

8a_0

.. _ ..

A

0

0

0

T

E

=o

,a m @

m_ Den o_o _z
%4

z
o

,_.._

_
.°

2

22

BB

B_,- 0

?

z
z

_2

z÷

o o

o o

_ _A O_

2

o

o
o

o

- : _ _ o_o_o
-& .._=

_ O0

o_°^ _ _" _.0 ! t

0 - I OOM

_o _o _r.._

o

o
E
o=

o_

o

o o

s

o_o

Jo

o o

-,.d ca

_o

• ," o E_ E

o _ .° °°

i _ co

-,_ 0

_o

_oo _ _

_ ®_o

u

_o

A

_ _"_ _ _o_=_

.... ,. ,.

.._,=._ _o_ _"

-_. _,

=,0 -_ "° .Ro , • _=_

_J

t4

_ o= =o

o

_ ..o
,_ _'-_ 0 ¢'_

0
._ _ a_ _

A

.o o _

Oo__ __e o=

o

. _®_'_=_ _®o_ _,_ _

m

_&=.. o
_n 0 _t, 4J

oo o__"_ _ _-"

o

o

: : -_

• 0

: ,_ _ : _
: _ _= . "_.

: o _ .: :_: _ _ _ .

: _o_, °.o _,, .2_._._
. _ o _'_ _ . _

e

. o.-, .:- o o
: ._-_ .,_ _,c .-®_ _ '.

: _=_ _ _ _ _. : _ _ ._
-, 0 _ 0

. o_ ,_,_ : _ _,_ ,_

I

H

E

o o "_ 0 _"

_o

,'_ee

0

: _ _ _® . o _ _ _,

........ _,....__ _

m

o

_ '_ o
'-'4

,_Naa

o o

et rt I_1, e_

o

o _,00 l.._ ._ -cl

_ _,J

_ o'10

o'0 o

..... _ o -_ _"_

o. _ °...

v v_ _ .,4 ,-4

o_ o_ o_

C

o _
,_o_ _'_=

o_

E
8.

I

! ! ,-4
I_+ EO

g =

c

.,.4

..

A

E _ A
A 0_

E >
¢0 ol

a) _. [.)

m E m r_

¢ m E

• . m

m

(_ ""

.,,d

u)

_o =

0
> E 0_0_

n_
m _ 0 0 J_

_o=
A

.. 8_. _

,,

E

_==>=

A

o.) _)

OJ

o, o.

:: _ _ ,_ _®_u_ ._" _ _'_

: _ _,,_ ._._ o_p : _ o

: _ _ o_ : _ _

a 0 _

: o_ _ : _ o o_o

0 mJ=

4J

• 0 ¢=

• t"
e

0,"_

0 _,

• o_

• -4 .-_

T

o
o •

eJ _ b_ ol i_

E_ E0 _

• O_ ._ --4 ! r:

f: 0 oo o o _

cE_ _o

: o_ _

: ;;;." -.... ,_ o_ o_ ,... ,... ,. ,. o_ .. o..

e

0
U .-4

e

. o

o
[..,

0 _ _

r. --_ 0

o o

, _ _ _ : _ _o_ _o_

0

o_ _ _ _ • _ ==
E -" _ =" o_ .;

,_ uJ E (0

,_o oo _ o

_ o_
,., _ _o _=_o = ,_==o_ ,_ .

k4 _ I n_

m

o_ oo _ _ o,_,-,

U

0

E_

o.

A

E

o_

._ o °_ _

0 _._ E 0 _J

ooo_ _:

4.a_o

v_ _ ._.s_

o

o.
_, o

_ _o _
o ._

,_ o

o
"_ o

o _ o
0

o
u

_o u

_ ® o

,o

L

o

o

U "-_ c°

® _o_ ..

o _

o"° =_ o_

U • _ _ 0

U

.... o

r_

"0 °

::: _° °._ =_o _.: =._°

":. o" .8'_',_ -_°'_ :: _°_T, ,_

: ;,; _ o_ _,_ : :_' =

_J
o_

_, _ _ _, • • • _ _ _ _ _ 4' _' _ _ 4' _' _' ee

et_
i¢t

o _

_ oo

• ° _ "_ 0 0

: o

e n_
e

: I
e

: _"

• u ,-_

: _
: _
• o ,-_

,--i

u') ,'_ 0,-4

: : ,
e C _

: _ _ o

: _ _ _ _ : _ _ _.'_

...... o........_ =........... ,.._ °_ .. _

A
o o,.

. o_4-J

°0

0

a,_m

,., . o -4t

: o,

: o_
o

o,,

"o

,-i

_0

U

• _ i
: _ o : _ _. _ _" _
: _ _ _ ,.,_._ _

o

_ _ _ _ _ o_

_ c__ _ _ _ _ _

_ _o_ _°_ _ o_ _o®_ _

_ _o_ __o_ ___°___o _ _°o_oo_°__o_

A

A

o _ _J _

_ i _E o o

o_ _o- _ -_'_ _4_

= o=o,o= - _ 8.
oo e=_,,o _ "_

o

_i 0 E m

O O °"

_ 8-8

W,4_

A

c c_

_ 8°_°

_ _ u E U

-o

_ o

(z=z ,'=_=_
o _ m_

O ",'_ 13_ O _
O _,E E

c-..,,._

1.4o'.,-,

U O v

.'_o
o

. • _ _ o o o-_._

I ,-_ I E

o=, _®®_ e®--=,=® =
(_11 ,"

@ @

A

_= _ ._.__

°"
_ _ U

U

,=_ ,I

(=

_. o
U _ _J 0

o
,,

.-i

•o o =
== ,_o_ o ,,

.. - _

o
o

,-_ c_

,.,-t

mE C_ 1=0

am ¢1

::_ _ _ _ _ _ __ _ __

°

3

O

o
I o E
r_,-q ^ CL
O u_ I O

_E • E

A

A ¢_ A

o _.._ o
- o_ o,_- =

• =

o o .._

0 _ 0

(g O_C

IEL r" i._ _1 O

;- 8

oo

,r' O

U

(1

o ";

® = • =

¢0 :3 '_

¢0

,, ® = _

,0_ =='_,=u= =_'-_,= o ,

== _.; =°5 =; =o5 ._ = .-
•-+ _ 3=

.... _ =® o === =_@

E _ o

== =_=

_o®o D-E
_ R _ C

O_ _0

. == (g E

0 _ 0

. ®.o_ .,3 ,"

o o==_ :!._ °

_ __- _ _=

,.=,
H _ m
H

:: :: :: ::
.. o. .. o.

_ o _®_ _

_ _ _ .o

o_ °_ o_ ,_ o_
._ o_

o_

. E :

• °= .

2

o o

¢

e

oo

0 '_' i f'_"" -"" =o

_ _ 0

.. 0... 0. 0..... ._ _ 0.._ 0.._ 0... 0.

._' :
:

,-4

o o, :

- i

,_ _: _ :
.C 13'

.mJ

_ 0,, _:

o ® _ :
•-, _ • _ "- :

_.,.s

: .._: _ oo _ :

0

: _ _ _ :

2 : -

_ : o

. &
• o

._o o .
1,4 _

o
._o . . :

. o_ _ :.

0 _ _-_ _ I_

_®- - - :U u

• -_ _ o _ ,_

0. o. *... 0.._ o... 0..... 0.
0. 0..... o_

°_ ° •

o_

--4
O.

A

_2

3

.-4

m

,-4

_o= :

¢ v

• Uo

.

: ._:: _ _.

4'

: _ _: =_'"

"..::: :: :: :: :: :: _

: _- :

:
u

• == :

0 0

: _:

: _:
: oo_:

: _2_':

: : : == :

: ® " : :
_ : : : >. :

__ : _ : : _ :
_ : ; : : o= :

•._ . _. _ • :

. _.=: : =o

: _: _ :

.. a=o

o. o. o. o, o_ o_

:: :: :" -2 :: :" :2 --

4'

e

e

e
e

,-4

= :

!:.!:.!! !! !! !:.!! !-_!" !: !:.!! !:.!! !-_ _ -

e

e

E o

o o

o=- :

_-.y :
=_=

• _

: _'_

: "_?..

: _

• ._ o

: ._-.__ _o

: ._o_

_ •

o :'":''2

!

o

e

5 "4.

I
I

• _: I r.

_: _+

e

,
o:

0 ¢ I_

0

E

o_

o

I - ?

0 o s_ _

e

c.n

: o._ :

: _ : :** o_

, ,_ :•

• 81 tq • I
@

= : :
e

: :

•. : :

:_o_ ; * :

-,o : :
G,o_. _" _ : :
. ® ,_ _ : :

U e

v :

:
*_ :

,_ :

1.4 '_

o. o o. i " _"w* o _ ""1 :s._ h. _ 0 I_U _,*J _ _>

. _._ : il _

I_e "0

, ,,- =.- _ ,- _ ._ - _ : _ _: =o_-_ :

- . _ =w ::
® :::':':::':::':: _

o

oo _
_ o_'

o _'_
_ _o>

o_ _

0

O_ U 0

0_ ._ 0_ ._

2

o

t-

_,o-

,=__ ,_= ..o°

o o

_o

o.

.O-r_
_OJD

• 0

0 _ _

• y

o, o

t

"I . o

T. ,o,

_ 0

o

o

o.,_,__'_ ;-

_r'3. _ ._

_ @ ..,-t I¢) ,-i

22222_

_ _ 0 0

_o__°_"
o .

o _"

...........__ __________ • ___

I

H

::h
n

J_

n_

0
E

(J el ,l_ _.-I

_ o._._o°_!,_, ,[_o -3_ _

............__ ___-'-'-_

t_

_o= o

,-i I_ .°
.Q x _,.,

o I ,iJ i_1

o o r" .IQ

_ oo• ° _ _.

o_
o°x °

.... °.

I,.i
I..i ::::1

I I _ ,, l

,_, i-)

11.4,-i

@-

t_

&

.el

_D

l I ,-.i

•.8_ _..-_@,, .-i t-

. ..

:,- 0 0 0 _

_ _ u i_.._o

_.J..-i,. ,, ,,

_ _&_ _'"

8

ii

o 2_

•"8 ."._ 99_

I_0

"@9 _ ''

...._ _-=

@-

(-

•-t .-1 _ .i_ °

o _

,--.el

_ ..-_o ,"

W e_ _ _ / _ _ i_ ¢)

= o &,oLeo ,o

.o===o o= o = . .. o= _o _

A

,-4 4)

.4 14

_,__o _ -.4

id ¢q

. , ®_

o-

8

,e,
m

o

N
-.4

H

_o
¢_ I::
¢_ IV

el el

el 0
H C:: I_

H ._

:_.
.. ,. °_
• _ ,. ,_

Y

o
n

. "

, o

o
,.

v•

el
e

• 1 "o I

--o
--._ q) "0 m 0 "4 ._ '_'1 '_'. -

-,4

I C: U.-I,-_ ,-I I_ I I _1

U "

"0 "0
v

o

_ 0 I _X X 14 0 Ill

n_ 0>1

I I "-_ _-J U

1=-,4

o o i-,,4

I-I ,-It |

:>,-_

__ _

? o
°°

o

A

,_,; _ o - oo >,_-o'

o_ _ _ =; .. _ "o '(,_
_0 _

¢

o _ _ _, _o

o_ oo

_ m4J

_ _o_ _ _o

_ _ _ _ _: o_ ,__

m

_ _ 0

o _

_ 0

-_o_

o _ _ _

_ °o

.o_'._ ,_ ._ _

.......... _ _

o

-,_ 0 .c; C: 0

o • .LJ ,-*

n_J=:

o

_Y

1 o -...¢ 1

"_ °° m

°° °° _ _

o • D

m ...t (J

o._

ii !! !: !! :: !: !! :: !'_ _

oo

• m m

• _"_ _ _ _ o
•"-400 "_

(J .._

• t.l

)¢ I_ r,.) ._

G) _" _ 0

_o

>,®_

5

-r-_@

_ o__J

e_ I,-I

,_> _ 0

4-_

........ __ ._ °_ ._ ._ ,_
.... • _ °_ _ _

o

I

o.

oj t I

..

_J

L I

)¢)¢)¢

o o
A Q) _1

°, '_._ *°

0 _J

o_

o_
o°

.I:::

I-+

I,-+

c
,- o
0

++.-,I I

.-4
..,.+

.,.+ A

o _ o
c A

,_ _O_o_ _

omU .Jl::

,<++,+..+ o o

0 _.1 r. v _-.-I °°

_b

I _ ,.-..i o

A

_. _oo_4J _

.;_: _ _ ,_+_)¢ r" _ I..,

g
I

, +++'__ _g o

,_..... o_, +

o_'_

'_-_ o_

,,_ o

.sJ
,.-i

_J

r_ IE ,-i

Q)

,_ _ _=

'-_ "10

_J

''_ _ _ _ "_ _ _

u d)

_J _J _J

¢J .._

J:::

_ I ,_ _,_ _

I< 3¢ -,_i I::: J= ¢1 r.

0 _

_ o _

o

0 .,-i I_

"0 IV m <p

al 14 bl m _ .!

(g I

_ _' -,4 R r* [2 " _

.. ,. ,_ o. • "1o

o J:: .c:

_ o_

o _

' o_

J::: _J

E _ Z._ E m

_, _ ._®_ .o

D_l_ ,-_0 I 0 _ /

=_ _oo _ ."¢: U

*_ *_ ._

"o

3¢
0

U

_J

>_

4J

"CI -,_ I ,-_ "0 _

=Y: _®o >,_-

•,.4 -,-I 0

...... _ _-

.%

.-i

l ..4 1 ._

_ _.'0 X ..vl

. _, + =E_, =.E

-,-II

I> I:
-,-I

®

Ill ¢II

0 U _ I_ l-I I ,'-4 1 "_ I

a,a _ el ul _I ul -,._

o

o

=,

z x

E

,iJ

o
• _ "0 "i:l

4J

0-.-_

,== "-o. ® x

r. 0

.,- @ 0•iJ I l:: I=

_Ii ,,-,i e II

i,_ .,,-i Ill 1,4

m ¢II

x _= .,.=n.>, "_"i" _'_'_ • "'"_

0 O_ •

el

_ o _o_

y_._o ®_ _ •

,4-,4

_J.

" ' '= o. , >,,_-_

a.,- _o

, ,_ _ _o_ _

,,_ "" .. o...

_ r_ i_ ns

__

..

o

.4
,-4

E

....

....

A

-,.4

I "o

I,..40 r.

._o
3=

3= 0

o=

0 _"_

_, _ _ ,_,_?

_'-' _ ?_,_

_o • _ _,-_,,o_ ,.-4

..-,o .- --.-, _._
•o ,-.o >,,, =._ .

,-,-o =o,o o

•

0

,?
o_ ._

o o_ ,_,_
10 _1 ¢g

YT
_ C C

0 0

0 0 _

==

,_ ,r-

r- -r-_

I ..-_ iII m

Eoo 0

. ,,3_ ®.-,
...'4

• -_ C:

1.4

! ...-4

x

.,.4

m

E -r-.,

E_ O

e

_e (J -.-=

o o

O'V-_

°,

I.+i._ _j iII I

.-i >_ t.,l.I¢ .I::o_

,_r-_ ,.,..4

O

I I

® o

e

v

o

v

0 I ,-4 I_

v-I

4_
-,-I

A_

2t !

3_ L

•-t -.-,t

_o

°_

4a 0

.r_ A

0 _

_0

r'.,_ J=

:o
'o "oZ

_ _" _ _ °_ _

E
E

_.J •o
O _

u

o
c: 0J

,.-4 .,-4

,_ _ o_ o_ _ ,_ _'_,._ _,o °
-no _ _ o _

_o _ o

I I O _ I O

rJ _.J

_ 0J

_J m

J O

== o o

•t'_ U 0

,.,-I

®'_: _o_._

0"1_ / I @

,v--, _>._

o

_J

_o

o

I I

@ @ @ I "0

O 0 0_-4 0

CO 0

o _ ...,

4J

U _ 0 0 U I

• r_ I I i e" ._ O

° ®_ _ ' ' ' " _o_, ° "_o"
4-'

m ,-_ 0 0 "4 ''4 I v_ _ t4 _

o._ _.,_

"" "_ _ E E -
..

! o

c- .

=to • • oo._;- o _-_ _

_).-i

.iJ

r.

o

.c:

o

- o

o

o "_

0_,0o o n

_ o ,"_ o_ _ _ _ _._ _ _

"0 "0

A

c:: c:

I ,'_ I ,-4

•t-1 in ._-im

ell L) •

aJ .IJ

...-I @-,,,4

r. r'

1,1 41

.,,4

v

_ _ o

o._

,_ _

u _o' 7

-,'4 I _J 0 '£_ "_ "=I

..-, ,o o

_ _ 0 @

.-4

X X_@

o._o_o __
®_ _ _ oo

= '-' .._._ _ o

_ w u oJ

d o

cm_

..... , .® _o
oo _- o

0 0_1 _

u

_J

n

- o

_.J A 1,4

I o .,,.-¢

.t.-_ o o o _ ,--_

A

- _ "_
® _;-_

• ®
" Y "" _o

o®,., _ ®,_o u,.,
•n @ I,.4 ._

b4 .-4 U
,...4 U J_ .,.a U

r. o

,.._ w. E

_o

k4

_o

c::
RI

o o

.i.a A ¢'_

•¢"_ C:

v_ AC_AU

U .C, O O _1 m .,..J _1

O_

_o

A

o o_

-,-4

e_

S4 "¢-_

(V ta _

,.o^ -e- _,.c_, _T -o,.--,u _ _ .,,-4 Ip

.--,.40

cq el _v

_.. _ o
v

e. tq ,-_

"o
v

e_e A

, O-,Q 0

.u ,,.-i s:::

•,.-* .,,,-,I

o_ _
-,'4

-,-4 .,_

.- , , _,_

:,. _ -_'_ _,_ -

,¢.J

r_

¢.J

A

o ,-4 ..,-4 _s_

E
r-

,.-4

I I_ ,,-4

v
r.

_ o°

_o _o_

0 f:_O

s r= o _ --

_ 7g

m'lO E

g _

Xo

!

I_ I "1'_ It I

@

o _

--4 *J

- o __?

i .._._ ¢p

,--t 0

•.-I U @ I t_ f_

o= _

o o _o_ o _o
_oo _ _o

o o

_ o o _

_oo o o

o=,_oo_oo _
_o _ _ _o

•-_ 0

.,_ (J

I i I

v _ v

o - _-__ _ _":_

_ _- _ -oo_ _o,_:,_o_

cq U_

I-n'O

3 a , _1 g_

4t .--_

_ _'_ a.__ ° " _

' 0 _3,_

aJ

_o

o_ _

-

_ o

_o _

. _ _

i..a-o

A

,,,..

c

,-4

4J

+-; I_ o

:>_ I
1 >

• K1

__ ,o _o _.o o

1,1 r. {n

.Q

o_

C

o. ,I

.._ e_,-4 KI--I

...-4"OH

0 --4 -_

¢4 I::

_o _

.; o,_

_4

"; 'd-
.Q o,
0.--_

I

•-_ I:::
O I :::i i_i ..-i

.. _s

"CI _I

i0" n.

I ,e, 0 0 I ,--I

>I ..,.q :>q . 0 >., .,_ la :>,, t'L _ _ ,,--t

1 .,.¢ ,I,a @ 0 ..J _ U _.J '111

•-_ .._-- .._ ..-

.,4

m

_ Eo

._ • _oO_O _

i _,? , o.._._ _o_o _,

• 0 @ I I 0'113

11.,J _a_ I_ o '_

,._ ,.,-i

• _,_, , , , _-.

4) m

.C ,-_r'

4] m

! r'

- • o

o_o _ _o

o. o_

C

m

U

-80

"_ _ o_ _, _
U E i0 -,-_m

.-_ E 0 0 w_

w4 I

m el

m OJ 4J _ m

0 fO

0-4

>_l _-_ 0 _

_o __ _' _o -_,_ _;_

o

cJ

o_

m

,o

I

"" c:

.-4 u i

)o_o_,_
J_ -,-I I

o

:, o= .. -__ ::

: _. _ _,_ _ :

_ : _ _ •

•- :: ,_
u_

.................... : ::i__ ::
" " ii _ _ ° el _ o_"_ ::

: o_ _ _ ::__o _ o _ o: _ _ • _o®_ = .. .
.c

::_o__ o _ iE• _ : ::o _'_ _ o
• el o el_ : ::®=._ _ _- :: "" "'®
. o= _ =_ : "-"_ el_ _=. o. .. . _ _ o- o. *.,..4:_ oo _o : _:=_o :_
: _ _ ._ : :3,_=_ : =_ :. ::_ o_,.

"I0
o

T
: : .. . o _ _,- so...... _ :: .. _,: .. _B_ _ . "'"_®_®== :3

_I,*.-I ..I= IJIJ _ .-*_, ,, _ _ - :: ::
,_ o -._a -,_ :3_ . . _w_ 0® " el , _' _ =e _'

i _ _ _ _ : :_ _ _.:_o_ : _:_ ;
• ":3 _= u "._"".o o ._ o_ ,_ :: ::o- o-.
. o.,_ "- * ..-,_>, .':!.- : "_Eo._-o c _, =_el DT ,=. _ X

: _. o='_ -_,_- - -_" : :'_5'_'_,,®® el,,, =o .. :: :: -_ ® __ = =o 3

: _c_ = _,,,. ._=_ _,.-_ : ... ,.'____ =._ _ =.- el- _ "_:'_.'__" 5_= ._. w _ _ ®o ® _.o.__ _., . ,._ =o® .._._ _o .:3 o.- ® w "" _ ," :3 _.,-, "o J_,,_
. 7-- • _o • .-- _=._-_ _ _'- ___. _ :'_.._, ,_ _

• e" _,4 x: • .. .Q ., .. q._ _ .._ el *. _ -- " el 14 _ • q-4 t_

- _ ® ® _3 • .-",_-_9_ _E _ _,_'2 "'el'" _ _ ""_:'3_ _ m._ >o

• _ ,.. r_ -- • *- ,- -- "_, ._ , .. -_'a,, , :-:':2::::::.2.2 _ _ .."........ _
• :.I.1.: ...

o

m o

_o_o_ _

_ >

oo_ _
o.

,. 0. 0.

_,l ,,.4

•.-4 I> •

_ _ .>._ "_
o _..o_

,.,.4 ,,n 00

"_°°_o.-..
o®

,-.i

__._ "-
... o_-
.=_

• 0 @ ¢V @ C: _*;

.-=....o_ "'_00oo_t

o

o
o

I •

I I

T
T T

o T

• oo I

H<
[3 ._

...@

.._ _)

_o

._ _)

o==
=.o

o

aJ
0

_o_s0

°_o _.

• _ ._ ,_ ,_ _

o
.._.,

o°_

J

v_ o al

OG

o_

o
o

o

_ _o-
_ o_

•. _ _

_° _ _ _ oo
=_ _o_o_ _ ..

o_o _ _=_o _

4 ,-40OO ,_¢3

'. _ u _

.K

.R

.k

4,

.B m

m

E_
0

._ U

.k

: _ _

: _ _ o
,,

4J "_

>,_, :

m

.._ o _ _r..-

-_ _,._ :

_ :
-_ :
_ :
_ :

• .,. _. _'_

"_ _u'- _. ,.,_ ._ _ ,_ _ _
0 m "

O.C:

o'_ • _" o '_ _ ,., _,_-

"s_ 0 4J j _ _ a,-J _) k4 _4

oo_ _u _ ,-_- _o _ _ _ _'c_

" " """""" ""!':!:.!i i:.!! !! i! o. i:._ :" ::-

z =

:n

!

oo

_J • s

•. *. °_ 0 0 0 0

: _ _ :

: 8 _ 8 _ : o

: _ 8_

.
• u ,-_

- _ o._o =_,; "

" _, _ _o_ _ _. .

_ o_
_ o

.,, ®_ :o

° , ==_o

: _ _ _ _ :
: _ _ _ _ :

&

m

_o _o_

o

I,.i

o

!

"_ _o

o_ -,4

C • W

o

® .- _ _8 =- _ _i _ _ _ _ o0 _ _

@0

_ :: :: _ •

A

) D,,_

j ,--4 _
•i =1 4J
: I= I=

E I

.i CLO

40 U
4 I I

J _ k'-..I

4

e

_::

0

==

.4

_o
u

e

• •

n_ •

_ ._o :

_ _ :

_oo=_L.'.._ _o_.._ i.
o.o_ o#__ =___ ___ ...

!i _:._o_ _=,=o=o=_:,:::

: _ _ _ ==_ :
: _ E _ _- :

!.,•:.:.:.:.'.'.:.:.:.:.:-:.:.'-:-:-:-:.-

0 el

- 0 " _ r'
Z U o-4 -.4

• o_ o t o =,= _o o,, o _ _._- u.,_ u _,, ®'o,o _CG_

) U "_ U _ _ _

_0-,'+
8+,

8

+i! ii{ili
i!i!ii!!

_H _J

_=_z_® o_ o- o--,

U @ 0 _ ,,.,_ _

= e" E _ O -_ I O.-'41 E-'I L

@ " U I

,, c O+e c c w w c • w c_ .'P._._
-_41 @ 0 I .u I ,u ' _

o _ _

0 _

O_ 0 Z 0 _ _.4 _ _:

O t:: ,u.,._..-_ U -,-t tt @ 1.4 _ _11-I I _ _1 _1.4 U

I o I _.1 _ I -,-_ I..;, _ ,I.-' s_J el..-I i!1.-i..-_ _1,-_ lu _

o_ ooo o._ _ _. _ _,, _._ _ o_,_ o_,_ o_ o

u i_ ra o_ u_ y _ _ c _ _ _ o_ u _ u ®_ u my u.m,

?.

"o
eQ

:oy

0

,-_ I1) o

a0

, o

•,_o)_=.o.._._. L_,=®-o,==_o,®'o

.101= I IJ I I:::: a,a I I::: _J I I:: a._ I I::: *J

) ¢I

o
A
H

_ I 0

_uI::: 0 0 0 _ I U

0 _11 0 f _.-I 0 I
,'_ S4 U 0 _ U E

O O4"O ,IJ I_,-_

U 0 _ 0 m I _)

7
=:

o_
?

o

r=

o
0
z

® o° ,_

.Y:_ T 8

J O @ _ 4J I _J

I _ ¢ _ @ 0 _ I

" 0 0 0 • I OL) I U

_1 C 4.J E I I + Jl=l Oc
: .o _ 0 _ _-_ o _o o

0 _ _ o _ u I ,*_

_ l l ,,.-4 _ I+ _ +IJ

_ __

-2

o

0

m

r"

o
U.-_

=o

=I -,-4 "13

_ :

_; :
_ :

::
.=_ :

_ _ :

"++ :

= "=_ :

_o _ _ __ ::
_ :
_ :

....:..........-.*.-... -..-.".."..".."..".."..t t :..

e. r.

_l_v_=o_Ig _ 0 I ._ ° I _0 1 _'_I ''_

6" _ ± ._ _- ,: ,-, o u..-, o o " 9 u_ V

I-i

t9

0

_."0

@ o_

_o _ _ _o "_
• _ ,_ _

_0 _ 0 _;

. o : o _:.

D_

, _ o_o

e_

ac_

. o.,.,,, o_: o : . ®

_: _= = o=oo °="
0 _ E'_ _

_ o

_oo_0 _U

-,'4

"_ 0

b3 ..4 _ k4 I _ _ 0 0

_ _ ®_o

0_ 0 0 _*-_
o

_ _ 0 _._ O_
r

b_

¢o

"o

.-4

YB

"o

0

o

oI

o

o _
m

_ o

o

u

•,,.¢ ..,-4 .,_ ._J E-_ o
n

t,. s_

o,.

°

o

_8
0-_

_o
o

_o

e.._ u

,-t 1_ --i ._ o

o=._,,,®_=._ >,. "o,,,.-,

E _

'_ • _ _ o o (I_o ._:., o. o"8®o° _:R_. _'_'_ o ;

e°=
o°
u

r, I..i e_ I-I_ 0 e

0 _ _"_ 0 0 -,-_ c_

0 _ M.,-t U

g -,.,'-'z_ 0 0 0 0

":_3.® _o.o :SE,, ._

.,oo=-_, =-o_.,.= _o_=.

_ o : =_ . _._°_&_=_ E_. o_

